基于主从博弈的社区综合能源系统分布式协同优化运行策略(Matlab代码实现)

简介: 基于主从博弈的社区综合能源系统分布式协同优化运行策略(Matlab代码实现)

💥1 概述

文献来源:

高效、清洁、低碳是当今世界能源发展的主流 方向。发展实现能源与信息等领域新技术深度融


合,适应分布式能源发展、多元化(冷、热、电、气 等)用能需求等新业态的综合能源系统已成为能源 革命的客观要求与必然选择[1]。其中,以冷热电联 供(combined cooling heating and power,CCHP)系统 为核心,以“源–网–荷”各环节协同为主要特征的社区综合能源系统(community integrated energy system,CIES),有助于促进新能源规模化开发,实现不同能源的优势互补,保障社区内部经济高效用能[2-3],日益成为研究热点。


随着 CIES 的发展和电力市场的改革,源荷之间的耦合交互愈加明显,正由传统的垂直一体式结构


(自上而下)向交互竞争型结构(互相作用)转变[12]。电价不仅会影响负荷需求,负荷也会反作用于电价,传统集中优化方法难以描述两者之间的交互行为。此外,CIES 优化属于一类大规模复杂系统的优化问题,参数、变量繁多,集中优化对数据的传输、通信和处理能力要求较高,且不能保护各主体的信息隐私安全。因此,研究 CIES 分布式优化是更合适的选择,例如博弈论[13]、一致性理论[14-15]、交替方向乘子法[16]、分布式凸交计算[17]等。其中,博弈论是研究当多个决策主体之间存在利益关联或冲突时,各主体如何根据自身能力及所掌握信息,做出合理决策的理论[13]。非合作博弈[18]、讨价还价博弈[19]、演化博弈[20]、主从博弈[21]等博弈模型,逐渐应用于能源系统的优化运行和能量管理等领域。


本文中IER是基于电力市场中售电公司的概念提出的,在电能交易的基础上又考虑了热能交易,


满足用户的多样化需求。IER 作为源、荷之间的桥梁,基于供需关系,日前优化购入、售出的电价、热价,从供能侧购买电、热等能源,并出售给用能侧,从中赚取收益。IER 这一模式的引入,能够提供相比电网更加灵活的电价策略,对于引导分布式供能系统参与电力市场竞争、鼓励中小型社区用户科学用能都具有积极作用。在能源交易过程中,IER同样需要承担因价格波动、供需不平衡而带来的风险。当 CCHP 输出电功率无法满足负荷需求时,IER必须高价从电网购电。


新能源CCHP系统将新能源发电与传统燃料发电优势互补,基于能量梯级利用的原则,同时满足


用户电、热、冷不同的能量需求,其结构示意图如图 2 所示。文中新能源包含风电、光伏等,并采用最大化消纳原则。可控单元包括内燃发电机、燃气锅炉。内燃机发电的同时,缸套水和烟气中携带的热量可以通过余热装置回收再利用,并与燃气锅炉产生的热量一起,在冬季经热交换器供热,或夏季经吸收式制冷机转化为冷量为用户供冷。基于 IER的报价,运营商优化各设备的逐时出力,以获得更高的收益。

📚2 运行结果


部分代码:

%燃气发电机、锅炉常数
ae=0.0013;
be=0.16;
ce=0;
ah=0.0005;
bh=0.11;
ch=0;
ce_ave=0.7;%平均电价约束
ch_ave=0.45;%平均热价约束
n_c=0.8;%热交换效率
n_ex=0.83;   %余热回收效率
n_ice=0.35;   %内燃机发电效率
%热储能
H_storage_max=1500; h_n=0.98;h_charge=0.98;h_discharge=1;%热储能容量/自损/充热/放热;
%电储能
E_storage_max=2000; e_n=1;e_charge=0.95;e_discharge=0.95;%电储能容量/自损/充电/放电;
bggin=1000;%%电储能
for i=1:24
    B(1,i)=bggin+Pcharge(1,i)*e_charge-Pdischarge(1,i); % 0.98为转换率
    bggin=B(1,i);
end
begin=1000;%%热储能
for i=1:24
    L(1,i)=begin*h_n+h_charge*Hti(1,i)-Hto(1,i);%%%热储能容量
    begin=L(1,i);
end
%约束条件
Constraints =[];
for i=1:24
    Constraints=[Constraints,200<=L(1,i)<=H_storage_max];
end
Constraints=[Constraints,L(1,24)>=800];
for i=1:24
    Constraints=[Constraints,0<=Hti(1,i)<=200*UHti(1,i)];
    Constraints=[Constraints,0<=Hto(1,i)<=150*UHto(1,i)];
end
for i=1:23
    Constraints=[Constraints,-300<=Hti(1,i+1)-Hto(1,i+1)-(Hti(1,i)-Hto(1,i))<=200];
end
for i=1:24
    Constraints=[Constraints,UHti(1,i)+UHto(1,i)<=1];
end
%% 电储能容量约束、充电约束、放电约束、状态约束、SOC约束
for i=1:24
    Constraints=[Constraints,0<=Pcharge(1,i)<=200*UPcharge(1,i)];
    Constraints=[Constraints,0<=Pdischarge(1,i)<=200*UPdischarge(1,i)];
end
%% 蓄电池爬坡约束
for i=1:24
    if  i>0&&i<24
        Constraints=[Constraints,-200<=Pcharge(1,i+1)-Pdischarge(1,i+1)-(Pcharge(1,i)-Pdischarge(1,i))<=200];
    elseif i==24
        Constraints=[Constraints,-200<=Pcharge(1,1)-Pdischarge(1,1)-(Pcharge(1,i)-Pdischarge(1,i))<=200];
    end
end
%% 蓄电池充放电约束
for i=1:24
    Constraints=[Constraints,UPcharge(1,i)+UPdischarge(1,i)<=1];
end
Constraints=[Constraints,sum(UPcharge(1,1:24)+UPdischarge(1,1:24))<=10];%考虑寿命
Constraints=[Constraints,B(1,24)==1000];
for i=1:24
    Constraints=[Constraints,400<=B(1,i)<=1600];
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]王海洋,李珂,张承慧,马昕.基于主从博弈的社区综合能源系统分布式协同优化运行策略[J].中国电机工程学报,2020,40(17):5435-5445.DOI:10.13334/j.0258-8013.pcsee.200141.

🌈4 Matlab代码实现

相关文章
|
29天前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
15天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
24天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
2月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
|
2月前
MATLAB - MPC - 优化问题(Optimization Problem)
MATLAB - MPC - 优化问题(Optimization Problem)
84 0
下一篇
无影云桌面