基于主从博弈的社区综合能源系统分布式协同优化运行策略(Matlab代码实现)

简介: 基于主从博弈的社区综合能源系统分布式协同优化运行策略(Matlab代码实现)

💥1 概述

文献来源:

高效、清洁、低碳是当今世界能源发展的主流 方向。发展实现能源与信息等领域新技术深度融


合,适应分布式能源发展、多元化(冷、热、电、气 等)用能需求等新业态的综合能源系统已成为能源 革命的客观要求与必然选择[1]。其中,以冷热电联 供(combined cooling heating and power,CCHP)系统 为核心,以“源–网–荷”各环节协同为主要特征的社区综合能源系统(community integrated energy system,CIES),有助于促进新能源规模化开发,实现不同能源的优势互补,保障社区内部经济高效用能[2-3],日益成为研究热点。


随着 CIES 的发展和电力市场的改革,源荷之间的耦合交互愈加明显,正由传统的垂直一体式结构


(自上而下)向交互竞争型结构(互相作用)转变[12]。电价不仅会影响负荷需求,负荷也会反作用于电价,传统集中优化方法难以描述两者之间的交互行为。此外,CIES 优化属于一类大规模复杂系统的优化问题,参数、变量繁多,集中优化对数据的传输、通信和处理能力要求较高,且不能保护各主体的信息隐私安全。因此,研究 CIES 分布式优化是更合适的选择,例如博弈论[13]、一致性理论[14-15]、交替方向乘子法[16]、分布式凸交计算[17]等。其中,博弈论是研究当多个决策主体之间存在利益关联或冲突时,各主体如何根据自身能力及所掌握信息,做出合理决策的理论[13]。非合作博弈[18]、讨价还价博弈[19]、演化博弈[20]、主从博弈[21]等博弈模型,逐渐应用于能源系统的优化运行和能量管理等领域。


本文中IER是基于电力市场中售电公司的概念提出的,在电能交易的基础上又考虑了热能交易,


满足用户的多样化需求。IER 作为源、荷之间的桥梁,基于供需关系,日前优化购入、售出的电价、热价,从供能侧购买电、热等能源,并出售给用能侧,从中赚取收益。IER 这一模式的引入,能够提供相比电网更加灵活的电价策略,对于引导分布式供能系统参与电力市场竞争、鼓励中小型社区用户科学用能都具有积极作用。在能源交易过程中,IER同样需要承担因价格波动、供需不平衡而带来的风险。当 CCHP 输出电功率无法满足负荷需求时,IER必须高价从电网购电。


新能源CCHP系统将新能源发电与传统燃料发电优势互补,基于能量梯级利用的原则,同时满足


用户电、热、冷不同的能量需求,其结构示意图如图 2 所示。文中新能源包含风电、光伏等,并采用最大化消纳原则。可控单元包括内燃发电机、燃气锅炉。内燃机发电的同时,缸套水和烟气中携带的热量可以通过余热装置回收再利用,并与燃气锅炉产生的热量一起,在冬季经热交换器供热,或夏季经吸收式制冷机转化为冷量为用户供冷。基于 IER的报价,运营商优化各设备的逐时出力,以获得更高的收益。

📚2 运行结果


部分代码:

%燃气发电机、锅炉常数
ae=0.0013;
be=0.16;
ce=0;
ah=0.0005;
bh=0.11;
ch=0;
ce_ave=0.7;%平均电价约束
ch_ave=0.45;%平均热价约束
n_c=0.8;%热交换效率
n_ex=0.83;   %余热回收效率
n_ice=0.35;   %内燃机发电效率
%热储能
H_storage_max=1500; h_n=0.98;h_charge=0.98;h_discharge=1;%热储能容量/自损/充热/放热;
%电储能
E_storage_max=2000; e_n=1;e_charge=0.95;e_discharge=0.95;%电储能容量/自损/充电/放电;
bggin=1000;%%电储能
for i=1:24
    B(1,i)=bggin+Pcharge(1,i)*e_charge-Pdischarge(1,i); % 0.98为转换率
    bggin=B(1,i);
end
begin=1000;%%热储能
for i=1:24
    L(1,i)=begin*h_n+h_charge*Hti(1,i)-Hto(1,i);%%%热储能容量
    begin=L(1,i);
end
%约束条件
Constraints =[];
for i=1:24
    Constraints=[Constraints,200<=L(1,i)<=H_storage_max];
end
Constraints=[Constraints,L(1,24)>=800];
for i=1:24
    Constraints=[Constraints,0<=Hti(1,i)<=200*UHti(1,i)];
    Constraints=[Constraints,0<=Hto(1,i)<=150*UHto(1,i)];
end
for i=1:23
    Constraints=[Constraints,-300<=Hti(1,i+1)-Hto(1,i+1)-(Hti(1,i)-Hto(1,i))<=200];
end
for i=1:24
    Constraints=[Constraints,UHti(1,i)+UHto(1,i)<=1];
end
%% 电储能容量约束、充电约束、放电约束、状态约束、SOC约束
for i=1:24
    Constraints=[Constraints,0<=Pcharge(1,i)<=200*UPcharge(1,i)];
    Constraints=[Constraints,0<=Pdischarge(1,i)<=200*UPdischarge(1,i)];
end
%% 蓄电池爬坡约束
for i=1:24
    if  i>0&&i<24
        Constraints=[Constraints,-200<=Pcharge(1,i+1)-Pdischarge(1,i+1)-(Pcharge(1,i)-Pdischarge(1,i))<=200];
    elseif i==24
        Constraints=[Constraints,-200<=Pcharge(1,1)-Pdischarge(1,1)-(Pcharge(1,i)-Pdischarge(1,i))<=200];
    end
end
%% 蓄电池充放电约束
for i=1:24
    Constraints=[Constraints,UPcharge(1,i)+UPdischarge(1,i)<=1];
end
Constraints=[Constraints,sum(UPcharge(1,1:24)+UPdischarge(1,1:24))<=10];%考虑寿命
Constraints=[Constraints,B(1,24)==1000];
for i=1:24
    Constraints=[Constraints,400<=B(1,i)<=1600];
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]王海洋,李珂,张承慧,马昕.基于主从博弈的社区综合能源系统分布式协同优化运行策略[J].中国电机工程学报,2020,40(17):5435-5445.DOI:10.13334/j.0258-8013.pcsee.200141.

🌈4 Matlab代码实现

相关文章
|
1月前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
117 65
|
15天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
16天前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
2月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
74 18
|
4月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
3月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
72 8
|
4月前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
116 3
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
299 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
177 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
201 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章