基于萤火虫算法优化的BP神经网络预测模型(Matlab代码实现)

简介: 基于萤火虫算法优化的BP神经网络预测模型(Matlab代码实现)

1 概述

现实的世界中混沌现象无处不在,大至宇宙,小到基本粒子,都受到混沌理论支配.如气候变化会出

现混沌现象,数学、物理、化学和生物中也存在混狸现象,混沌的出现,打破了学科之间的界限,是一门

新兴的交叉学科.随着非线性动力学领域的发展,混沌时间序列预测已成为混沌领域研究的热点.许多

专家学者在这一领域做了许多研究工作,如 EMD算法[1]、联合嫡扩维法[2]、支持向量机3l、Volterra滤波器[4]、BP神经网络模型 5]、RBF神经网络模型!6以及一些混合模型[783.在这些预测算法中,神经网络因具有良好的泛化能力与强大的学习能力,成为许多专家学者研究的热点.但在实际应用中,神经网络中初始权值和阈值的取值对其优化性能有着较大的影响3].萤火虫优化算法(Glowworm SwarmOptimization,GSO)是模拟萤火虫求偶或觅食行为而提出的一种新的群智能算法[10],它不仅具有很强的全局寻优能力,而且不需要目标函数的梯度信息,具有易用性、鲁棒性和容易实现等特点,非常适用于神经网络的参数优化.

本文从非线性时间序列出发,提出了一种采用萤火虫算法优化BP神经网络的算法(GSOBPNN),该算法利用萤火虫算法得到更优的网络初始权值和阈值,该方法利用萤火虫算法来弥补BP神经网络连接权值和阈值选择上的随机性缺陷.利用该方法对Duffing 系统产生的混沌时间序列预测分析,仿真结果表明该算法具有更高的预测准确性.


2 萤火虫算法


基本萤火虫算法是Krishnanad等人在2005年提出的一种新型群智能优化算法[8,它是将搜索和寻优过程模拟成萤火虫个体的吸引和移动过程,通过求解问题的目标函数量化萤火虫个体所处位置的优劣.在萤火虫算法中,每只萤火虫分布在目标函数的定义空间内,这些萤火虫个体都有自己的决策半径且自身携带荧光粉,萤火虫的亮度是由自己所在的位置的目标函数值决定,某处的亮度越大说明该处的萤火虫具有越好的目标函数值,从而可以吸引更多的萤火虫往该方向移动,由于每个萤火虫拥有各自的决策半径,决策半径同时会受到相邻的萤火虫影响,当其周围的萤火虫的数量较少时,萤火虫的决策半径就会增大,从而能够吸引周围更多的萤火虫.当周围的萤火虫的数量比较多的时候,决策半径就会变小.最终,绝大多数萤火虫会聚集在若干个具有较优目标函数值的位置.


3 萤火虫算法优化BP神经网络的算法设计

3.1 基本思想

GSOBPNN的基本思想是:根据输入输出参数确定BPNN的网络结构,从而确定萤火虫算法每个个体的编码长度.种群中的每个个体都包含了BPNN 的所有权值和阈值,通过适应度函数计算个体适应度函数值,并通过位置更新、决策半径更新以及荧光素更新找到最佳函数值对应的个体.将GSO优化得到的个体对BPNN的初始权值和阈值进行赋值,再利用BPNN 网络模型进行优化,从而得到具备全局最优解的BPNN预测值.


3.2 萤火虫算法优化BP神经网络算法

 

4 运行结果


5 参考文献

[1]侯越,赵贺,路小娟.基于萤火虫优化的BP神经网络算法研究[J].兰州交通大学学报,2013,32(06):24-27.

6 Matlab代码及文章

相关文章
|
3天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
9天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
6天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
10天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
6天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
10天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
8天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
7天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
8天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
30 10
|
9天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
37 10

热门文章

最新文章