AI顶会论文解读 | 达摩院榜首人脸检测模型MogFace

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: AI顶会论文解读 | 达摩院榜首人脸检测模型MogFace

奇武 魔搭ModelScope社区

01开源

论文链接:MogFace: Towards a Deeper Appreciation on Face Detection

模型&代码:

简易应用:

02背景

人脸检测算法是在一幅图片或者视频序列中检测出来人脸的位置,给出人脸的具体坐标,一般是矩形坐标。它是人脸关键点、属性、编辑、风格化、识别等模块的基础。本文通过实验观察发现,对应设计出如下三个模块构建出一个高性能的人脸检测器MogFace:

II

1.)动态标签分配策略(dynamic label assignment)

2.)误检上下文相关性分析(FP context analysis)

3.)金字塔层级监督信号分配(pyramid layer level GT assignment)

该方法的模型在WIDER FACE榜单上取得了截止目前将近两年的六项第一。

03观察

1.1 动态标签分配策略(dynamic label assignment)

为每个anchor点定义cls和reg目标是训练检测器的必要过程,在人脸检测中这个过程称之为标签分配(Label Assignment)。

最近,标签分配吸引了诸多研究人员的注意,在人脸检测及通用物体检测领域提出了一系列方法,例如:OTA、PAA,ATSS以及HAMBox。

如示例图(a),标签分配过程依赖4个元素。分别是:

1.)offline information: a.)IoU (anchor与ground-truth框的IoU) , b.)CPD (anchor与ground-truth中心点的距离) 。

2.)online information: a.)PCS (cls分支对anchor的前景分类概率值) ,b.)PLC (reg分支对anchor的预测坐标值) 。

但是,目前的标签分配方法存在三个问题。

1.)若只用offline information做静态标签分配,那么会有很多具备更强回归能力的negative anchor无法被有效利用起来,会导致标签分配策略欠饱和。

2.)若过度信任online information动态调整正负anchor时(如OTA和Hambox),由于online information属于预测信息可信度不高,会导致标签分配策略错误多, 极端情况下会陷入trivial 的分配结果。

3.) 若引入大量超参 (K in ATSS, alpha in OTA)做标签分配,则当数据集分布发生变化时,需要大量的调参时间。

1.2 误检上下文相关性分析(FP context analysis)

在实际应用中,人脸检测器并不会十分关心AP的指标,而对误检(false positive [FP])的数量十分敏感。针对这个问题,目前的做法是收集大量带有FP的图片去fine-tune或者from scratch训练检测器,来帮助检测器了解更多范式的FP,但是我们发现有些频繁出现在训练集中的的FP在这种策略下无法有效解决。这篇文章,我们发现了一个有趣的现象:对于同一个FP,当它的context发生变化时,对于同一个检测器来说它可能就不是FP了。如下图(c),最左面的图片里日历是FP,剩余两张日历都不是FP。

1.3 金字塔层级监督信号分配(pyramid layer level GT assignment)

scale-level 数据增强策略常常作通用物体检测以及人脸检测中解决scale variance主要手段。如图(b)所示,相对于COCO,人脸检测数据集Wider Face 中人脸的尺度分布更为严峻。

为此,我们分提出了一个新的问题,如何合理的分配ground-truth 在不同pyramidlayer上的分布?即检测器的性能与每个pyramidlayer匹配ground-truth的个数之间的关系是什么?是否越多越好?

通过严格的对比实验我们发现:“对于所有的pyramid layer来说,并不是这个pyramid layer匹配到越多的ground-truth就越好”。这说明要挖掘每一个pyramidlayer的最好性能,需要控制在这个pyramidlayer上的ground-truth分配的比例。

04方法

2.1 Adaptive Online Incremental Anchor Mining Strategy (Ali-AMS)

针对上述“动态标签分配策略(dynamic label assignment)”观察分析,本文提出了在里面一种自适应的在线增量锚挖掘策略(Ali-AMS),它基于standard anchor matching 策略,并进一步adaptive 帮助outlier face匹配anchor。如下:

2.2 Hierachical Context-Aware Module (HCAM)

基于上述“误检上下文相关性分析(FP context analysis)”观察分析,发现“对于同一个FP,当它的context发生变化时,对于同一个检测器来说他可能就不是FP了”,我们进一步提出了一个two-step的模块来显示的encode context 信息来帮助区分FP和TP,显著减少了FP的数量。

2.3 Selective Scale Enhancement Strategy (SSE)

基于上述的“金字塔层级监督信号分配(pyramid layer level GT assignment)”观察分析,发现“对于所有的pyramid layer来说,并不是这个pyramid layer匹配到越多的ground-truth就越好”,我们提出通过控制pyramid layer 匹配的ground-truth的数量来最大化pyramid layer 的性能。

05实验

3.1 Ablation Study

3.2 Comparison with sota

06模型体验路径

接下来给大家介绍下我们研发的各个域上的开源免费模型,欢迎大家体验、下载(大部分手机端即可体验):

RetinaFace人脸检测关键点模型

https://modelscope.cn/models/damo/cv_resnet50_face-detection_retinaface/summary

MogFace人脸检测模型-large

https://modelscope.cn/models/damo/cv_resnet101_face-detection_cvpr22papermogface/summary

TinyMog人脸检测器-tiny

https://modelscope.cn/models/damo/cv_manual_face-detection_tinymog/summary

ULFD人脸检测模型-tiny

https://modelscope.cn/models/damo/cv_manual_face-detection_ulfd/summary

Mtcnn人脸检测关键点模型

https://modelscope.cn/models/damo/cv_manual_face-detection_mtcnn/summary

口罩人脸识别模型FaceMask

https://modelscope.cn/models/damo/cv_resnet_face-recognition_facemask/summary

ArcFace人脸识别模型

https://modelscope.cn/models/damo/cv_ir50_face-recognition_arcface/summary

人脸活体检测模型-IR

https://modelscope.cn/models/damo/cv_manual_face-liveness_flir/summary

人脸活体检测模型-RGB

https://modelscope.cn/models/damo/cv_manual_face-liveness_flrgb/summary

FLCM人脸关键点置信度模型

https://modelscope.cn/models/damo/cv_manual_facial-landmark-confidence_flcm/summary

人脸表情识别模型FER

https://modelscope.cn/models/damo/cv_vgg19_facial-expression-recognition_fer/summary

人脸属性识别模型FairFace

https://modelscope.cn/models/damo/cv_resnet34_face-attribute-recognition_fairface/summary

相关文章
|
28天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
78 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
107 2
|
20天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
39 4
|
29天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
67 6
|
1月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
50 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
54 1
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1
|
6天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
32 10

热门文章

最新文章