快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 本实践将采用阿里云机器学习平台PAI-DSW模块针对 Llama-2-7B-Chat 进行全参数微调。PAI-DSW是交互式建模平台,该实践适合需要定制化微调模型,并追求模型调优效果的开发者。

📕 阿里云大语言模型(LLM)实战训练营火热开营中,点击报名参与


前言

近期,Meta 宣布大语言模型 Llama2 开源,包含7B、13B、70B不同尺寸,分别对应70亿、130亿、700亿参数量,并在每个规格下都有专门适配对话场景的优化模型Llama-2-Chat。Llama2 可免费用于研究场景和商业用途(但月活超过7亿以上的企业需要申请),对企业和开发者来说,提供了大模型研究的最新利器。


目前,Llama-2-Chat在大多数评测指标上超过了其他开源对话模型,并和一些热门闭源模型(ChatGPT、PaLM)相差不大。阿里云机器学习平台PAI第一时间针对 Llama2 系列模型进行适配,推出全量微调、Lora微调、推理服务等场景最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。


【往期最佳实践】:

  1. 快速玩转 Llama2!机器学习 PAI 最佳实践(一)—低代码 Lora 微调及部署
  2. 快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练
  3. 快速玩转 Llama2!机器学习 PAI 最佳实践(三)—快速部署WebUI


最佳实践:Llama2 全参数微调训练

  • 本实践将采用阿里云机器学习平台PAI-DSW模块针对 Llama-2-7B-Chat 进行全参数微调。PAI-DSW是交互式建模平台,该实践适合需要定制化微调模型,并追求模型调优效果的开发者。

一、运行环境要求

Python环境3.9以上,GPU推荐使用A100(80GB),该资源比较紧俏,建议多刷新几次。

二、准备工作

1、登入PAI并下载 Llama-2-7B-Chat

a. 登入PAI控制台 https://pai.console.aliyun.com/

b. 进入 PAI-DSW 创建实例后下载模型文件。运行如下代码,可以自动为您选择合适的下载地址,并将模型下载到当前目录。

import os
dsw_region = os.environ.get("dsw_region")
url_link = {
    "cn-shanghai": "https://atp-modelzoo-sh.oss-cn-shanghai-internal.aliyuncs.com/release/tutorials/llama2/llama2-7b.tar.gz",
    "cn-hangzhou": "https://atp-modelzoo.oss-cn-hangzhou-internal.aliyuncs.com/release/tutorials/llama2/llama2-7b.tar.gz",
    "cn-shenzhen": "https://atp-modelzoo-sz.oss-cn-shenzhen-internal.aliyuncs.com/release/tutorials/llama2/llama2-7b.tar.gz",
    "cn-beijing": "https://atp-modelzoo-bj.oss-cn-beijing-internal.aliyuncs.com/release/tutorials/llama2/llama2-7b.tar.gz", 
}
path = url_link[dsw_region]
os.environ['LINK_CHAT'] = path
!wget $LINK_CHAT
!tar -zxvf llama2-7b.tar.gz

如果您的地区不在上述地区中,您可以自行选择与你地域最近的链接进行下载(不同地域不共享内网,记得将链接中的-internal去掉)。同一地域的数据下载速度快,不同地域之间也可以下载,但是速度比同一地域略慢。


如果您希望从ModelScope下载模型,请点击链接:https://modelscope.cn/models/modelscope/Llama-2-7b-chat-ms/summary

2、下载和安装环境

接着下载和安装所需要的环境。

  • ColossalAI是大规模并行AI训练系统,在本例中我们使用该框架进行模型微调。
  • transformers是基于transformers模型结构的预训练语言库。
  • gradio是一个快速构建机器学习Web展示页面的开源库。
! wget https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/llama2/ColossalAI.tar.gz
! tar -zxvf ColossalAI.tar.gz
! pip install ColossalAI/.
! pip install ColossalAI/applications/Chat/.
! pip install transformers==4.30.0
! pip install gradio==3.11

3、下载示例训练数据

下载训练所需的数据,这里我们提供的一份创意生成数据,包括发言稿生成等内容。

您也可以参考该格式,自行准备所需数据。

! wget https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/llama2/llama_data.json
! wget https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/llama2/llama_test.json

三、微调模型

您可以使用已经写好的训练脚本,进行模型训练。

! sh ColossalAI/applications/Chat/examples/train_sft.sh

四、试玩模型

模型训练完成后,下载我们提供的webUI demo,试玩微调完成的模型(注意模型地址替换为自己训练好的模型地址)。

import gradio as gr
import requests
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
#模型地址替换为自己训练好的模型地址
tokenizer = AutoTokenizer.from_pretrained("/mnt/workspace/sft_llama2-7b",trust_remote_code=True)
#模型地址替换为自己训练好的模型地址
model = AutoModelForCausalLM.from_pretrained("/mnt/workspace/sft_llama2-7b",trust_remote_code=True).eval().half().cuda()
def inference(text):
    from transformers import pipeline
    pipe = pipeline("text-generation", model=model, tokenizer=tokenizer,device='cuda:0', max_new_tokens=400)
    res=pipe(text)
    return res[0]['generated_text'][len(text):]
demo = gr.Blocks()
with demo:
    input_prompt = gr.Textbox(label="请输入需求", value="请以软件工程师的身份,写一篇入职的发言稿。", lines=6)
    generated_txt = gr.Textbox(lines=6)
    b1 = gr.Button("发送")
    b1.click(inference, inputs=[input_prompt], outputs=generated_txt) 
demo.launch(enable_queue=True, share=True)

五、模型上传至OSS并在线部署

如果希望将上述模型部署至PAI-EAS,您需要首先将训练完成的模型上传至OSS。

下列参数需要根据您自己的信息填写

# encoding=utf-8
import oss2
import os
AK='yourAccessKeyId'
SK='yourAccessKeySecret'
endpoint = 'yourEndpoint'
dir='your model output dir'
auth = oss2.Auth(AK, SK)
bucket = oss2.Bucket(auth, endpoint, 'examplebucket')
for filename in os.listdir(dir):
    current_file_path = dir+filename
    file_path = '需要上传地址'
    bucket.put_object_from_file(file_path, current_file_path)

接下来进行部署工作,步骤请参考【最佳实践三:Llama2 快速部署 WebUI】


What's More

  1. 本文提到的机器学习平台PAI对Llama2 系列模型进行适配,指为支持Llama2系列模型在PAI上的微调和推理,PAI进行了开发环境的适配。
  2. 本文主要展示了基于阿里云机器学习平台PAI快速进行Llama2微调及部署工作的实践,主要是面向7B和13B尺寸的。后续,我们将展示如何基于PAI进行70B尺寸的 Llama-2-70B 的微调及部署工作,敬请期待。
  3. 上述实验中,【最佳实践三:Llama2 快速部署 WebUI】支持免费试用机型运行,欢迎点击【阅读原文】前往阿里云使用中心领取“PAI-EAS”免费试用后前往PAI控制台体验。


【往期最佳实践】:

  1. 快速玩转 Llama2!机器学习 PAI 最佳实践(一)—低代码 Lora 微调及部署
  2. 快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练
  3. 快速玩转 Llama2!机器学习 PAI 最佳实践(三)—快速部署WebUI


📕大语言模型(LLM)实战训练营入口:立即参与


参考资料:

  1. Llama2: Inside the Model https://ai.meta.com/llama/#inside-the-model
  2. Llama 2 Community License Agreement https://ai.meta.com/resources/models-and-libraries/llama-downloads/
  3. HuggingFace Open LLM Leaderboard https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
  4. 阿里云机器学习平台PAI:https://www.aliyun.com/product/bigdata/learn



特别提示您 Llama2 属于国外公司开发的限制性开源模型,请您务必在使用前仔细阅读并遵守 Llama2 的许可协议,尤其是其限制性许可条款(如月活超过7亿以上的企业需申请额外许可)和免责条款等。

此外提醒您务必遵守适用国家的法律法规,若您利用 Llama2 向中国境内公众提供服务,请遵守国家的各项法律法规要求,尤其不得从事或生成危害国家、社会、他人权益等行为和内容。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI ×LLaMA Factory 框架,基于全参方法微调 Qwen2-VL 模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
|
10天前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
26天前
|
机器学习/深度学习 数据采集 人工智能
浅谈机器学习,聊聊训练过程,就酱!
本故事讲的是关于机器学习的基本概念和训练过程。通过这个故事,你将对机器学习有一个直观的了解。随后,当你翻阅关于机器学习的书籍时,也许会有不同的感受。如果你有感觉到任督二脉被打通了,那我真是太高兴了。如果没有,我再努努力 ヘ(・_|
37 0
浅谈机器学习,聊聊训练过程,就酱!
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 计算机视觉 Python
模型预测笔记(三):通过交叉验证网格搜索机器学习的最优参数
本文介绍了网格搜索(Grid Search)在机器学习中用于优化模型超参数的方法,包括定义超参数范围、创建参数网格、选择评估指标、构建模型和交叉验证策略、执行网格搜索、选择最佳超参数组合,并使用这些参数重新训练模型。文中还讨论了GridSearchCV的参数和不同机器学习问题适用的评分指标。最后提供了使用决策树分类器进行网格搜索的Python代码示例。
70 1
|
2月前
|
存储 人工智能 并行计算
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
138 8
|
1月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
45 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

热门文章

最新文章

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面