电网用户窃电识别

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等方法来发现窃电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。目前,很多供电局主要通过工作人员利用计量异常报警功能和电能量数据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息监测窃漏电情况和发现计量装置的故障。

传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等方法来发现窃电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。

目前,很多供电局主要通过工作人员利用计量异常报警功能和电能量数据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息监测窃漏电情况和发现计量装置的故障。根据报警事件发生前后客户计量点有关的电流、电压、负荷数据情况等,构建基于指标加权的用电异常分析模型,实现检查客户是否存在窃电、违章用电.及计量装置故障等。

以上防窃漏电的诊断方法,虽然能获得用电异常的某些信息,但由于终端误报或漏报过多,无法达到真正快速精确定位窃漏电嫌疑用户的目的,往往令稽查工作人员无所适从。而且在采用这种方法建模时,模型各输人指标权重的确定需要用专家的知识和经验来判断,具有很大的主观性,存在明显的缺陷,所以实施效果往往不尽如人意。

现有的电力计量自动化系统能够采集到各相电流、电压、功率因数等用电负荷数据以及用电异常等终端报警信息。异常告警信息和用电负荷数据能够反映用户的用电情况,同时稽查工作人员也会通过在线稽查系统和现场稽查来找出窃漏电用户,并录入系统。

通过这些数据信息提取出窃漏电用户的关键特征,构建窃漏电用户的识别模型,就能自动检查、判断用户是否存在窃漏电行为,大大降低稽查工作人员的工作量,保障人民的正常用电,安全用电。

载入数据并进行数据探索

选择好数据集之后,里面是一个用户的三个窃漏电指标以及用户是否真实窃漏电的数据。其中包括:电量趋势下降指标,线损指标,告警类指标数量 以及 是否窃漏电。

_

这里我们可以通过从左侧 组件-统计分析 拖入相关系数矩阵这个组件,来观察各个特征对于输出电力。

_

右键单击完成的组件,选择查看分析报告,就可以得到我们的相关性分析了。从这张相关性图中,我们会发现,其实这三个指标对于最终是否为窃电用户的关系都不是特别明显,也就是说决定用户是否为窃电用户的特征并不明显的具有单一性。此时我们还可以通过左侧的 组件-统计分析 拖入数据视图 来分析各个特征对于我们的标签列的数据分布。我们只需要按照如下配置选择特征列

_

然后选择我们的标签列

_

最后我们同样右键单击从此处开始运行后,右键单击完成的组件,选择查看分析报告,就可以看到各个特征和标签列在数据分布上的关系。

对数据进行建模

完成简单的探索性分析之后,我们就可以开始选择合适的算法模型建模了。我们可以先通过 组件-数据预处理 中的拆分组件 对数据做一次拆分,将数据分为训练集和测试集。

然后我们可以使用组件-机器学习-回归 中的逻辑回归二分类 来对我们的数据进行回归建模。这里我们需要选择我们的特征列(X)和我们的标签列(Y) 这里我们的特征列就选择 : power_usage_decline_level
,line_loss_rate 和 warning_num

_

对回归模型进行预测和评估

建模完毕之后,我们可以通过 组件-机器学习 中的预测来预测该模型在测试数据集上的效果。特征和原样输出我们都可以默认全选。然后我们再从左侧的 组件-机器学习-评估 中选择二分类评估 即可获得我们的模型效果 这时候整个实验的应该如下图:

_

右键我们完成运行的二分类评估组件,即可看到我们的模型效果。这里我们的AUC达到了 0.9827, 效果非常不错。

_

这样我们就通过机器学习PAI平台完成了用户窃电行为的识别。我们可以通过EAS在线部署将这个服务部署为可在线调用的服务,为电网提供用户窃电行为的在线识别服务.

本实验参考了《Python数据分析与挖掘实战》,如有版权等问题,请联系本文作者。我们尊重学术领域每一位研究者们对于学术的贡献,致力将技术和现实生活更好的结合应用落地。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
安全 Unix
智能驾驶系统对于行车安全的帮助程度
智能驾驶系统对于行车安全的帮助程度
|
6月前
|
机器学习/深度学习 算法 计算机视觉
ython打造智能车牌识别系统,实现快速准确的车辆识别与追踪技术
ython打造智能车牌识别系统,实现快速准确的车辆识别与追踪技术
|
6月前
|
传感器 监控 数据可视化
智能犁具与播种设备精准播种
智能犁具与播种设备精准播种
46 1
|
传感器 监控 安全
井下空气质量检测预警系统,煤矿生产、事故应急检测和实时监测
井下空气质量检测预警系统,主要用于煤矿生产、事故应急检测和实时监测
井下空气质量检测预警系统,煤矿生产、事故应急检测和实时监测
|
安全 物联网 物联网安全
物联网设备安全:实时检测7类安全风险(Agentless)
设备端无需集成Agent,就可以通过IoT安全中心实时检测8类安全风险(暴力破解、身份认证失败、身份泄露、低版本TLS、连接未加密、恶意文件、异地连接)。
288 0
|
传感器 编解码 人工智能
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(上)
本文作者提出了一种鲁棒的车道检测和跟踪方法来检测车道线,该方法主要介绍了三个关键技术。首先,应用双边滤波器来平滑和保留边缘,引入了一个优化的强度阈值范围(OITR)来提高canny算子的性能,该算子检测低强度(有色、腐蚀或模糊)车道标记的边缘。第二,提出了一种稳健的车道验证技术,即基于角度和长度的几何约束(ALGC)算法,然后进行霍夫变换,以验证车道线的特征并防止不正确的车道线检测。最后,提出了一种新的车道线跟踪技术,即水平可调车道重新定位范围(HALRR)算法,该算法可以在左、右或两条车道标记在短时间内部分和完全不可见时跟踪车道位置。
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(上)
|
编解码 人工智能 算法
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(下)
本文作者提出了一种鲁棒的车道检测和跟踪方法来检测车道线,该方法主要介绍了三个关键技术。首先,应用双边滤波器来平滑和保留边缘,引入了一个优化的强度阈值范围(OITR)来提高canny算子的性能,该算子检测低强度(有色、腐蚀或模糊)车道标记的边缘。第二,提出了一种稳健的车道验证技术,即基于角度和长度的几何约束(ALGC)算法,然后进行霍夫变换,以验证车道线的特征并防止不正确的车道线检测。最后,提出了一种新的车道线跟踪技术,即水平可调车道重新定位范围(HALRR)算法,该算法可以在左、右或两条车道标记在短时间内部分和完全不可见时跟踪车道位置。
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(下)
|
机器学习/深度学习 算法
基于深度神经网络的车辆牌照检测与识别【含代码】
车牌识别系统可以自动检测并识别图像中的车辆牌照,其算法主要包括牌照定位、牌照分割、字符识别等步骤。本文将给出一种基于深度学习的车牌识别系统方案。 要快速掌握开发人工智能系统的技能,推荐汇智网的 机器学习系列在线课程 由于可以自动地从视频图像中提取车辆牌照信息,因此车牌识别系统可以应用于以下行业: 公共安全:用于检测被盗抢车辆,将车牌与盗抢车辆数据库记录比对即可发现。
5138 0
|
传感器 安全 生物认证
越野车车辆分析系统
本文研究全球及中国市场越野车车辆分析系统现状及未来发展趋势,侧重分析全球及中国市场的主要企业,同时对比北美、欧洲、中国、日本、东南亚和印度等地区的现状及未来发展趋势

热门文章

最新文章