电网用户窃电识别

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等方法来发现窃电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。目前,很多供电局主要通过工作人员利用计量异常报警功能和电能量数据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息监测窃漏电情况和发现计量装置的故障。

传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等方法来发现窃电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。

目前,很多供电局主要通过工作人员利用计量异常报警功能和电能量数据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息监测窃漏电情况和发现计量装置的故障。根据报警事件发生前后客户计量点有关的电流、电压、负荷数据情况等,构建基于指标加权的用电异常分析模型,实现检查客户是否存在窃电、违章用电.及计量装置故障等。

以上防窃漏电的诊断方法,虽然能获得用电异常的某些信息,但由于终端误报或漏报过多,无法达到真正快速精确定位窃漏电嫌疑用户的目的,往往令稽查工作人员无所适从。而且在采用这种方法建模时,模型各输人指标权重的确定需要用专家的知识和经验来判断,具有很大的主观性,存在明显的缺陷,所以实施效果往往不尽如人意。

现有的电力计量自动化系统能够采集到各相电流、电压、功率因数等用电负荷数据以及用电异常等终端报警信息。异常告警信息和用电负荷数据能够反映用户的用电情况,同时稽查工作人员也会通过在线稽查系统和现场稽查来找出窃漏电用户,并录入系统。

通过这些数据信息提取出窃漏电用户的关键特征,构建窃漏电用户的识别模型,就能自动检查、判断用户是否存在窃漏电行为,大大降低稽查工作人员的工作量,保障人民的正常用电,安全用电。

载入数据并进行数据探索

选择好数据集之后,里面是一个用户的三个窃漏电指标以及用户是否真实窃漏电的数据。其中包括:电量趋势下降指标,线损指标,告警类指标数量 以及 是否窃漏电。

_

这里我们可以通过从左侧 组件-统计分析 拖入相关系数矩阵这个组件,来观察各个特征对于输出电力。

_

右键单击完成的组件,选择查看分析报告,就可以得到我们的相关性分析了。从这张相关性图中,我们会发现,其实这三个指标对于最终是否为窃电用户的关系都不是特别明显,也就是说决定用户是否为窃电用户的特征并不明显的具有单一性。此时我们还可以通过左侧的 组件-统计分析 拖入数据视图 来分析各个特征对于我们的标签列的数据分布。我们只需要按照如下配置选择特征列

_

然后选择我们的标签列

_

最后我们同样右键单击从此处开始运行后,右键单击完成的组件,选择查看分析报告,就可以看到各个特征和标签列在数据分布上的关系。

对数据进行建模

完成简单的探索性分析之后,我们就可以开始选择合适的算法模型建模了。我们可以先通过 组件-数据预处理 中的拆分组件 对数据做一次拆分,将数据分为训练集和测试集。

然后我们可以使用组件-机器学习-回归 中的逻辑回归二分类 来对我们的数据进行回归建模。这里我们需要选择我们的特征列(X)和我们的标签列(Y) 这里我们的特征列就选择 : power_usage_decline_level
,line_loss_rate 和 warning_num

_

对回归模型进行预测和评估

建模完毕之后,我们可以通过 组件-机器学习 中的预测来预测该模型在测试数据集上的效果。特征和原样输出我们都可以默认全选。然后我们再从左侧的 组件-机器学习-评估 中选择二分类评估 即可获得我们的模型效果 这时候整个实验的应该如下图:

_

右键我们完成运行的二分类评估组件,即可看到我们的模型效果。这里我们的AUC达到了 0.9827, 效果非常不错。

_

这样我们就通过机器学习PAI平台完成了用户窃电行为的识别。我们可以通过EAS在线部署将这个服务部署为可在线调用的服务,为电网提供用户窃电行为的在线识别服务.

本实验参考了《Python数据分析与挖掘实战》,如有版权等问题,请联系本文作者。我们尊重学术领域每一位研究者们对于学术的贡献,致力将技术和现实生活更好的结合应用落地。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
【2月更文挑战第17天】ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
303 2
ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
|
7月前
|
JSON JavaScript 前端开发
Highcharts 教程
Highcharts 教程
207 2
|
11月前
|
JSON API 数据格式
python 使用 Stable Diffusion API 生成图片示例
本文提供了一个使用Python调用Stable Diffusion API生成图片的示例程序,包括启动API设置、发送POST请求、保存生成的图片和JSON数据,以及如何通过API调用特定模型的说明。
python 使用 Stable Diffusion API 生成图片示例
|
11月前
|
Oracle 关系型数据库
Oracle 19c OCP 082认证考试题库(第5题)- 2024年修正版
这是2024年修正版的Oracle 19c OCP认证题库,包含1Z0-082考试的90道题目,通过分数为60%,考试时间为150分钟。本文由CUUG原创整理,第五题解析了关于UNION等集合运算符的正确选项,答案为CD。要获得OCP认证,需通过082和083两门考试,并在Oracle指定的WDP机构接受培训。
141 7
|
机器学习/深度学习 人工智能 自然语言处理
Transformer 能代替图神经网络吗?
Transformer模型的革新性在于其自注意力机制,广泛应用于多种任务,包括非原始设计领域。近期研究专注于Transformer的推理能力,特别是在图神经网络(GNN)上下文中。
378 5
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
330 1
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
188 4
【传知代码】图神经网络长对话理解-论文复现
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
250 1
|
存储 监控 安全
API网关是如何提升API接口安全管控能力的
API安全性越来越重要,对API安全进行防护既有利于用户安全的使用API所提供的服务,又能够为用户的隐私数据进行保驾护航。所以,提高API安全防护能力的问题亟待解决。面对以上形势,现在越来越多的企业采用API网关来管理内部API。以下从API资产管理、API安全防护、API风险溯源三个方面介绍API网关如何对API进行全生命周期的安全管理。

热门文章

最新文章