【LSTM分类】基于长短期记忆网络的数据分类预测附matlab代码

简介: 【LSTM分类】基于长短期记忆网络的数据分类预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于长短期记忆网络(Long Short-Term Memory, LSTM)的数据分类预测是一种常见的序列数据分析方法。LSTM是一种特殊的循环神经网络(Recurrent Neural Network, RNN),具有记忆单元和门控机制,能够更好地处理序列数据中的长期依赖关系。

下面是基于LSTM的数据分类预测的步骤:

  1. 数据准备:首先,需要准备用于分类预测的训练数据集和测试数据集。序列数据应具有标签,以便进行监督学习。
  2. LSTM模型搭建:构建LSTM模型。LSTM模型由多个LSTM层组成,每个LSTM层都有一个记忆单元和三个门控单元(输入门、遗忘门和输出门)。可以根据问题的复杂程度和数据的特点来设计合适的LSTM模型结构。
  3. 数据预处理:将输入序列数据进行适当的预处理,如标准化、归一化或序列填充等。这有助于提高模型的训练效果。
  4. 模型训练:使用训练数据集对LSTM模型进行训练。在每个时间步,将输入序列提供给LSTM模型,并根据实际标签计算损失函数。然后使用反向传播算法来更新模型的权重和偏置,以最小化损失函数。
  5. 模型评估:使用测试数据集对训练好的LSTM模型进行评估。将测试数据集输入到LSTM模型中,根据模型的输出进行分类预测,并与真实标签进行比较,计算模型的准确率、精确率、召回率、F1值等指标。
  6. 模型优化:根据评估结果,可以进行模型的优化,如调整LSTM层数、调整记忆单元大小、调整学习率等,以提高模型的性能和泛化能力。

基于LSTM的数据分类预测可以应用于各种序列数据的分类问题,如文本分类、时间序列预测、语音识别等。通过LSTM模型的记忆能力和门控机制,可以更好地捕捉序列数据中的长期依赖关系,提高预测准确性。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train)';t_test  = categorical(T_test )';%%  数据平铺% 将数据平铺成1维数据只是一种处理方式% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构% 但是应该始终和输入层数据结构保持一致P_train =  double(reshape(P_train, 12, 1, 1, M));P_test  =  double(reshape(P_test , 12, 1, 1, N));%%  数据格式转换for i = 1 : M    p_train{i, 1} = P_train(:, :, 1, i);endfor i = 1 : N    p_test{i, 1} = P_test( :, :, 1, i);end%%  创建网络layers = [ ...  sequenceInputLayer(12)               % 输入层    lstmLayer(6, 'OutputMode', 'last')   % LSTM层  reluLayer                            % Relu激活层    fullyConnectedLayer(4)               % 全连接层  softmaxLayer                         % 分类层  classificationLayer];%%  参数设置options = trainingOptions('adam', ...       % Adam 梯度下降算法    'MaxEpochs', 1000, ...                  % 最大迭代次数    'InitialLearnRate', 0.01, ...           % 初始学习率    'LearnRateSchedule', 'piecewise', ...   % 学习率下降    'LearnRateDropFactor', 0.1, ...         % 学习率下降因子    'LearnRateDropPeriod', 750, ...         % 经过 750 次训练后 学习率为 0.01 * 0.1    'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集    'ValidationPatience', Inf, ...          % 关闭验证    'Plots', 'training-progress', ...       % 画出曲线    'Verbose', false);%%  训练模型net = trainNetwork(p_train, t_train, layers, options);%%  仿真预测t_sim1 = predict(net, p_train); t_sim2 = predict(net, p_test ); %%  数据反归一化T_sim1 = vec2ind(t_sim1');T_sim2 = vec2ind(t_sim2');%%  性能评价error1 = sum((T_sim1 == T_train)) / M * 100 ;error2 = sum((T_sim2 == T_test )) / N * 100 ;%%  查看网络结构analyzeNetwork(net)%%  数据排序[T_train, index_1] = sort(T_train);[T_test , index_2] = sort(T_test );T_sim1 = T_sim1(index_1);T_sim2 = T_sim2(index_2);%%  绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};title(string)xlim([1, N])grid%%  混淆矩阵figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';    figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';

⛄ 运行结果

⛄ 参考文献

[1] 徐一轩,伍卫国,王思敏,等.基于长短期记忆网络(LSTM)的数据中心温度预测算法[J].计算机技术与发展, 2019, 29(12):7.DOI:10.3969/j.issn.1673-629X.2019.12.001.

[2] 曹宇,张静萍,魏海平,et al.基于长短期记忆网络LSTM模型的新冠病毒传播预测方法:CN202110405335.1[P].CN202110405335.1[2023-07-26].

[3] 魏昱洲,许西宁.基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报, 2019(2):8.DOI:CNKI:SUN:DZIY.0.2019-02-008.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合




相关文章
|
3天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
29天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
140 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章

下一篇
DataWorks