基于SVD奇异值分解算法的人脸身份识别matlab仿真

简介: 基于SVD奇异值分解算法的人脸身份识别matlab仿真

1.算法理论概述
人脸身份识别是计算机视觉领域中的一个重要研究方向,它可以对人脸图像进行识别和验证。人脸身份识别在人脸识别门禁系统、安全监控等领域有着广泛的应用。将介绍一种基于SVD奇异值分解算法的人脸身份识别方法,该方法使用SVD分解将人脸图像表示为低维特征向量,然后使用最近邻分类器将待分类的人脸图像与已知的人脸图像进行比较。

特征提取
人脸身份识别算法的第一步是对人脸图像进行特征提取,将人脸图像转化为特征向量。常用的特征提取方法包括主成分分析(PCA)和线性判别分析(LDA)。在本文中,我们将使用SVD奇异值分解来提取人脸图像的特征向量。具体地,我们将人脸图像表示为一个矩阵X,其中每一列代表一张人脸图像,然后对X进行SVD分解,即

a7275df0af7a12ccbbc4e7c377d126ae_82780907_202307251457040678932460_Expires=1690268824&Signature=wJEgtW8bxbkkkvt%2FFYVglgo0AdU%3D&domain=8.png

其中,δ(ci,cj)是一个指示函数,当ci=cj时取值为1,否则取值为0。

实现步骤

数据预处理
在实现算法之前,我们需要进行数据预处理,将人脸图像转化为矩阵形式。具体地,我们可以将每张人脸图像转化为一个向量,然后将这些向量按列排列成一个矩阵X。在这个矩阵中,每一列代表一张人脸图像,每一行代表一维特征。我们可以使用标准的图像处理库,如OpenCV和PIL来实现这个步骤。

SVD分解
在进行SVD分解之前,我们需要对数据进行归一化处理,将每一维特征都缩放到相同的范围内。常用的归一化方法包括将每一维特征都减去均值,然后除以标准差。然后,我们对归一化后的矩阵X进行SVD分解,得到三个矩阵UΣVT。我们可以根据需要保留前k个奇异值,然后将Uk作为特征向量,即

c3c48031ee0300b1cb4c648f476e601e_82780907_202307251458080022846088_Expires=1690268888&Signature=YLHJqaAM%2FlLDBQcNhkrpe7lXBHE%3D&domain=8.png

最近邻分类器
在进行最近邻分类器之前,我们需要将已知的人脸图像集合D划分为训练集和测试集。通常情况下,我们将80%的图像作为训练集,剩下的20%的图像作为测试集。对于每个测试样本,我们将它的特征向量f(x)与训练集中的所有样本进行比较,选取距离最近的n个样本,并将它们所属的身份类别作为预测类别。在实现最近邻分类器时,我们可以使用Python中的scikit-learn库来实现。

2.算法运行软件版本
MATLAB2022a

3.算法运行效果图预览

f5f71b8f6bed69513088a13b21472515_82780907_202307251458230600586923_Expires=1690268903&Signature=bYddG7AhDmFsWEBAapiXbGrS3gI%3D&domain=8.png

4.部分核心程序

```% 计算每个已知个体的坐标向量xi
rank = size(A, 2);
xi = u(:, 1:rank)' A;
% 定义阈值,这些值是通过反复试验来定义的
epsilon_0 = 50; % 与训练集中任何已知人脸的最大允许距离S
epsilon_1 = 15; % 与面空间的最大允许距离
% 分类
images{1} = ['test/1.jpg'];
images{2} = ['test/3.jpg'];
images{3} = ['test/5.jpg'];
images{4} = ['test/11.jpg'];
images{5} = ['test/25.jpg'];
images{6} = ['test/nothing.jpg'];
images{7} = ['test/X.jpg'];
figure;% 创建一个新的图形窗口
for jj = 1:length(images)
images{jj}
epsilons = zeros(N, 1); % 初始化距离向量
test_image = readImage(images{jj});% 读取待识别图像
test_image = test_image(:) - train_mean; % 标准化测试图像
x = u(:, 1:rank)'
test_image; % 计算测试图像的坐标向量x
epsilon_f = ((test_image - u(:, 1:rank) x)' (test_image - u(:, 1:rank) x)) ^ 0.5;
subplot(3,3,jj); % 在图形窗口中创建一个子图
imshow(readImage(images{jj}),[]);% 显示待识别图像
% 检查它是否在面空间中
if epsilon_f < epsilon_1
% 计算待识别图像到人脸空间的距离ε
for i = 1:N
epsilons(i, 1) = (xi(:, i) - x)'
(xi(:, i) - x);
end
[val idx] = min(epsilons(:, 1)); % 找到到人脸空间距离最近的已知个体
if val < epsilon_0% 如果到已知个体的最大允许距离内
disp(sprintf('当前测试图片属于图片序号 %d', idx));% 输出识别结果所属的个体编号
title(['当前测试图片属于图片序号:', num2str(idx)]); % 在子图中添加标题显示识别结果
else
disp('未知人脸');% 输出无法识别的结果
title(['未知人脸']);% 在子图中添加标题显示无法识别的结果
end
else
disp('当前输入图片不存在人脸图片'); % 输出输入图像中不存在人脸的结果
title(['不存在人脸']);% 在子图中添加标题显示输入图像中不存在人脸的结果
end

checks(jj)=val;% 将到人脸空间距离最近的已知个体与待识别图像的距离保存到checks向量中

end

```

目录
打赏
0
0
0
0
216
分享
相关文章
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
322 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
199 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
264 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章