基于混合策略改进哈里斯鹰算法求解单目标优化问题IHHO附matlab代码

简介: 基于混合策略改进哈里斯鹰算法求解单目标优化问题IHHO附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对哈里斯鹰优化算法收敛精度低,易陷入局部最优空间等局限性,提出一种混合策略改进的哈里斯鹰优化算法.采用精英混沌反向学习策略初始化种群,增加初始种群多样性和精英个体数量,提高算法收敛性能;利用引入动态自适应权重的逃逸能量非线性递减策略替代哈里斯鹰算法的线性递减机制,提高算法全局探索和局部开发行为的平衡能力;采用拉普拉斯交叉算子策略生成适应度更高的新个体,提高算法抗停滞能力.对10个测试函数进行求解,结果表明改进算法的收敛精度,寻优性能及鲁棒性明显高于对比算法.通过对比改进前后算法的种群分布均匀性和收敛能力,验证了改进策略的有效性.

⛄ 部分代码

% ITU-R P.676-9, Annex 2 method for computing atmospheric attenuationclose all; clear all;p=1013; % pressure in hPa (1 atm=1013 hPa)t=15;    % atmospheric temp in C, determine from maps in P.1510 if not knownrho=7.5  % water vapor density (g/m^3)rp=p/1013;rt=288/(273+t);% Compute and plot specific attenuationi1=1;for f=1:350    ff(i1)=f;    gamdry(i1)=gamo(f,rp,rt);    gamwat(i1)=gamw(f,rp,rt,rho);    i1=i1+1;endfigureset(gca,'Fontsize',14)loglog(ff,gamdry,'linewidth',3)hold onloglog(ff,gamwat,'r--','linewidth',3)loglog(ff,gamdry+gamwat,'ko','markersize',8)xlabel('Frequency (GHz)')ylabel('Specific attenuation (dB/km)')grid onaxis([1 350 1e-3 1e2])set(gca,'Xtick',[1:10 20:10:100 200 350])set(gca,'Xticklabel',{'1';'2';'';'';'5';'';'';'';'';'10';'20';'';'';'50';'';'';'';'';'100';'200';'350'})set(gca,'Ytick',[0.001 0.01 0.1 1 10 100])set(gca,'Yticklabel',['0.001';' 0.01';' 0.1 ';'  1  ';'  10 ';' 100 '])legend('Oxygen','Water Vapor','Total')title('1 atm, 15^\circ C, \rho=7.5 g/m^3')% Compute and plot zenith attenuationi1=1;for f=1:350  ff(i1)=f;  t1=4.64/(1+0.066*rp^-2.3)*exp(-((f-59.7)/(2.87+12.4*exp(-7.9*rp)))^2);  t2=0.14*exp(2.12*rp)/((f-118.75)^2+0.031*exp(2.2*rp));  t3=0.0114/(1+0.14*rp^-2.6)*f*(-0.0247+0.0001*f+1.61e-6*f^2)/(1-0.0169*f+4.1e-5*f^2+3.2e-7*f^3);  ho=6.1/(1+0.17*rp^-1.1)*(1+t1+t2+t3);  if (f<70)&(ho>10.7*rp^0.3)     ho=10.7*rp^0.3;     display('Violated condition!'); drawnow;  end;  sigw=1.013/(1+exp(-8.6*(rp-0.57)));  hw=1.66*(1+1.39*sigw/((f-22.235)^2+2.56*sigw)+3.37*sigw/((f-183.31)^2+4.69*sigw)+1.58*sigw/((f-325.1)^2+2.89*sigw));    attendry(i1)=ho*gamo(f,rp,rt);  attenwat(i1)=hw*gamw(f,rp,rt,rho);  i1=i1+1;endfigureset(gca,'Fontsize',14)loglog(ff,attendry,'b','linewidth',3)hold onloglog(ff,attenwat,'r--','linewidth',3)loglog(ff,attendry+attenwat,'ko','markersize',8)xlabel('工作频率 (GHz)')ylabel('大气气体吸收衰减 (dB)')grid onaxis([1 350 1e-3 1e3])set(gca,'Xtick',[1:10 20:10:100 200 350])set(gca,'Xticklabel',{'1';'2';'';'';'5';'';'';'';'';'10';'20';'';'';'50';'';'';'';'';'100';'200';'350'})set(gca,'Ytick',[0.001 0.01 0.1 1 10 100 1000])set(gca,'Yticklabel',['0.001';' 0.01';' 0.1 ';'  1  ';'  10 ';' 100 ';' 1000'])legend('氧气','水蒸气','总吸收损耗')title('1 atm, 15^\circ C, \rho=7.5 g/m^3')

⛄ 运行结果

⛄ 参考文献

[1]张海林,陈泯融.基于混合策略的改进哈里斯鹰优化算法[J].计算机系统应用, 2023, 32(1):166-178.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


相关文章
|
6天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
114 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章