m基于虚拟力优化算法的二维室内红外传感器部署策略matlab仿真

简介: m基于虚拟力优化算法的二维室内红外传感器部署策略matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
9dd975ccadea432ffdfb0455de5b2629_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0ac76812e1c5030aba2eb5b4a014b1df_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
红外传感器在室内环境监测、安防、智能控制等领域中得到了广泛应用。在室内部署红外传感器时,其位置的选择对于传感器的性能和信号质量有着至关重要的影响。因此,如何确定红外传感器的最佳部署位置成为了一个热门的研究课题。本文将介绍一种基于虚拟力优化算法的二维室内红外传感器部署策略,并重点介绍虚拟力算法在该策略中的应用。

一、研究背景

   红外传感器是一种广泛应用于室内环境监测、安防、智能控制等领域的传感器。在实际应用中,红外传感器的位置选择对于传感器的性能和信号质量有着至关重要的影响。因此,如何确定红外传感器的最佳部署位置成为了一个热门的研究课题。

   传统的红外传感器部署方法主要是基于经验和试错的方式进行的。这种方法存在着许多问题,如需要大量的时间和人力成本、无法保证部署的最优性、无法考虑到不同环境、不同传感器的影响等。因此,如何利用现代优化算法对红外传感器的部署位置进行优化是当前研究的热点之一。

二、虚拟力优化算法

   虚拟力优化算法是一种基于物理模型的优化算法。它通过模拟物理力学的作用,从而对待优化问题的解进行优化。其基本思想是将待优化问题的解表示为一组点的位置,然后引入一些虚拟力(如斥力、引力等),从而对点的位置进行优化。

虚拟力优化算法包括以下几个步骤:

初始化点的位置:随机生成一组初始点的位置。

计算虚拟力:根据问题的特点,计算每个点的斥力和引力。

更新点的位置:根据虚拟力的作用,更新每个点的位置。

终止条件:达到预定的终止条件后,输出最优解。

三、基于虚拟力优化的二维室内红外传感器部署策略

   为了解决红外传感器部署的优化问题,一种基于虚拟力优化算法的二维室内红外传感器部署策略。该策略的主要流程如下:

   建立室内二维模型:首先,需要建立室内的二维模型,包括房间的大小、布局、墙壁、家具等信息。可以使用二维建模软件进行建模,也可以使用激光扫描仪进行实时扫描。

   确定传感器数量和类型:根据实际需求,确定需要部署的红外传感器数量和类型。

  初始化点的位置:将室内空间划分为若干个区域,并随机生成一组初始点的位置,每个点对应一个传感器的部署位置。

计算虚拟力:根据问题的特点,计算每个点的斥力和引力。具体来说,可以采用以下几个虚拟力:

(1)斥力:用于避免传感器之间的重叠。斥力大小与传感器之间的距离成反比,距离越近,斥力越大。

(2)引力:用于吸引传感器到目标区域。引力大小与传感器与目标区域的距离成反比,距离越近,引力越大。

(3)墙壁斥力:用于避免传感器与墙壁的碰撞。墙壁斥力大小与传感器与墙壁的距离成反比,距离越近,斥力越大。

更新点的位置:根据虚拟力的作用,更新每个点的位置。具体来说,根据每个点所受到的虚拟力的大小和方向,计算每个点的加速度,然后根据加速度更新每个点的速度和位置。

重复步骤4和5,直到达到预定的终止条件。

输出最优解:当达到终止条件后,输出传感器的最佳部署位置.

f1覆盖率

   覆盖的计算,采用的是平面扫描法,对于两种传感器,一个圆形,一个正方形,那么对于每次优化得到的坐标,我们对整个平面区域进行扫描,计算每一个点是否处于某个或者多个传感器,如果满足这个条件,那么这个点计入到覆盖区域里面,然后扫描完所有点之后,统计一共多少个点呗扫描进去了,即覆盖率。对应代码为:

f2安装难易度

    安装难易度,这个部分没有专门的论文介绍,我们这里定义是传感器和额障碍物的距离作为安装难易度的判断依据。

f3,优化后传感器数量

    传感器数量,即每次优化后的数量,处于最大的预设值数量,如果这个值越小,那么越优。

3.MATLAB核心程序

for i=1:Num
    XYZ1=[x(i,1:(dim-2)/2);x(i,1+(dim-2)/2:(dim-2))];
    NUM1          = 10;
    NUM2          = 10;
    [p(i),X1,Y1,f1,f2] = func_obj1(XYZ1,NUM1,NUM2);
    y(i,:)= x(i,:);
end
%全局最优
pg = x(1,:);             
%下面这个for是优化适应度值的初始化计算 
for i=2:Num
    XYZ1=[x(i,1:(dim-2)/2);x(i,1+(dim-2)/2:dim-2)];
    NUM1          = 10;
    NUM2          = 10;
    [pa(i),X1,Y1,f1,f2] = func_obj1(XYZ1,NUM1,NUM2);
    [pb(i),X1,Y1,f1,f2] = func_obj1(XYZ1,NUM1,NUM2);
    if pa(i) < pb(i)
       pg=x(i,:);
    end
end

for t=1:MAXGEN%开始优化
    t
    for i=1:Num
        Fx(i,:) = w*Fx(i,:)+rand*(pg(1:(dim-2)/2)        -x(i,1:(dim-2)/2));%水平力
        Fy(i,:) = w*Fy(i,:)+rand*(pg(1+(dim-2)/2:(dim-2))-x(i,1+(dim-2)/2:(dim-2)));%垂直力
        Fxy     = sqrt(Fx(i,:).^2+Fy(i,:).^2);

        Fxn(i,:) = w*Fxn(i,:)+rand*(pg(dim-1)-x(i,dim-1));%水平力
        Fyn(i,:) = w*Fyn(i,:)+rand*(pg(dim)  -x(i,dim));%垂直力
        Fxyn    = sqrt(Fxn(i,:).^2+Fyn(i,:).^2);        
        %更新变量
        x(i,1:(dim-2)/2)         = x(i,1:(dim-2)/2)+Fx(i,:)./Fxy*max_sensor;
        x(i,1+(dim-2)/2:(dim-2)) = x(i,1+(dim-2)/2:(dim-2))+Fy(i,:)./Fxy*max_sensor;
        x(i,dim-1) = x(i,dim-1)+Fxn(i,:)./Fxyn*max_sensor;
        x(i,dim)   = x(i,dim)  +Fyn(i,:)./Fxyn*max_sensor;        


        XYZ1=[x(i,1:(dim-2)/2);x(i,1+(dim-2)/2:(dim-2))];
        NUM1        = floor(x(i,dim-1));
        NUM2        = floor(x(i,dim));
        if NUM1>=N1
           NUM1=N1;
        end
        if NUM2>=N2
           NUM2=N2;
        end
相关文章
|
6天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
31 3
|
6天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。