【图像处理】基于双目视觉的物体体积测量算法研究(Matlab代码实现)

简介: 【图像处理】基于双目视觉的物体体积测量算法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

本文运用基于双目立体视觉的技术,提出一种快速非接触测量目标物体的体积方法。此方法将适用于多种场景下的目标体积测量,具有测量精度较高、测量成本低和灵活等优点。


📚2 运行结果


bc92fac3de8344118bec00fd2527e8e0.png

31d74218c22f49e3a4f6e6ad52708a02.png

ada9347cce044ae6b8f3f945dd907f2b.png

cddbd792025c45728b8c4d9d57cedc6c.png

f96c3c7420f5481c81e17d5eb20050ae.png

ad9bd332c40c414a947e908e5a09b9c5.png

64731fbcb96a4fdf83c3ca640c9d6e45.png

202e4feeb0d54a908611a5e9831873d4.png

25b5a2a521284355a15a7956cb0572d3.png

6ed9fcf2932744e0bc4793cbf75683b8.png


主函数部分代码:

%%
% 清理空间
clc;
clear;
close all;
%% 导入立体标定参数
load stereoParams.mat
% 立体参数的可视化
% figure;
% showExtrinsics(stereoParams);
%% 导入数据
frameLeft = imread('images/left007.bmp'); 
frameRight = imread('images/right007.bmp');
[frameLeftRect, frameRightRect] = rectifyStereoImages(frameLeft, frameRight, stereoParams);
figure;
imshow(stereoAnaglyph(frameLeftRect, frameRightRect));
title('Rectified Frames');
%% 视差计算
frameLeftGray  = rgb2gray(frameLeftRect);
frameRightGray = rgb2gray(frameRightRect);
DisparityRange = [0, 160];
disparityMap = disparity(frameLeftGray, frameRightGray, 'Method','SemiGlobal','DisparityRange',DisparityRange,'BlockSize',5,'ContrastThreshold', 0.5,'UniquenessThreshold',0);
figure;
imshow(disparityMap, DisparityRange);
title('Disparity Map');
colormap jet
colorbar
%% 三维重建
points3D = reconstructScene(disparityMap, stereoParams);
% 单位为mm
points3D = points3D(:, 400:1000, :);
ptCloud = pointCloud(points3D);
figure;
pcshow(ptCloud);
% title('Original Data');
%% 空间位置变换
% 将有序点云变化为无序点云
ptCloudA= removeInvalidPoints(ptCloud);
% 坐标转换
Temp(:, 1) = ptCloudA.Location(:, 1);
Temp(:, 2) = ptCloudA.Location(:, 2);
Temp(:, 3) = -ptCloudA.Location(:, 3) + 400;
% 去除位置不合理的点
[i, j]=find(Temp(:, 3) < 0 | Temp(:, 3) > 500);
Temp(i, :) = [];
ptCloudB = pointCloud(Temp);
figure;
pcshow(ptCloudB);
title('Transform Data');
%% 去噪
% Threshold为离群值阈值,阈值为与选定点到邻居点的距离值的一个标准差,大于指定的阈值,则认为该点是异常值。
ptCloudC = pcdenoise(ptCloudB, 'NumNeighbors', 100, 'Threshold', 1);   %1~6此实验Threshold=1,第7次Threshold=10
figure;
pcshow(ptCloudC);
% title('Denoised Data');
%% 点云分割
% maxDistance:从一个内点到平面标量值的最大距离
maxDistance = 10;
referenceVector = [0, 0, 1];
% 拟合平面的法线向量和参考方向之间的最大绝对角距离,以度为单位指定为标量值。
maxAngularDistance = 5;
[model, inlierIndices, outlierIndices] = pcfitplane(ptCloudC, maxDistance, referenceVector, maxAngularDistance);
ptCloudPlane = select(ptCloudC, inlierIndices);
ptCloudD = select(ptCloudC, outlierIndices);
figure;
pcshow(ptCloudC);
% title('Splitting1 Data');
hold on
plot(model);
figure;
pcshow(ptCloudD);
% title('Part1 Data');
figure;
pcshow(ptCloudPlane);
title('Part2 Data');
%% 空间位置校正
ptCloudE = pcTransform(ptCloudD, model);
figure;
pcshow(ptCloudE);
title('Transform');


🎉3 参考文献

[1]隋婧,金伟其.双目立体视觉技术的实现及其进展[J].电子技术应用,2004(10):4-6+12.

部分理论引用网络文献,若有侵权联系博主删除。


🌈4 Matlab代码实现

相关文章
|
6天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
114 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
2月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
3月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
3月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
67 3
|
3月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
4月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
105 5
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
322 65
|
4月前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。

热门文章

最新文章