【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

简介: 【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 变分模态分解算法


1.2 蜣螂优化算法


1.3 LSTM


📚2 运行结果


🎉3 参考文献


🌈4 Python代码实现


💥1 概述

1.1 变分模态分解算法

变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量


混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过


程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。


1.2 蜣螂优化算法

蜣螂优化算法是最新的群智能优化算法,2022年底提出,里面有相关的文章和代码,可以结合自身课题进行研究,值得推荐,亲用优化效果非常的好。


1.3 LSTM

长短时记忆( long-short term memory,LSTM) 神经网络是 Hochreiter 等提出的一种改进后的循环式神经网络,可有效解决循环式神经网络存在的梯度爆炸和阶段性梯度消失的问题。在传统


循环式神经网络基础上,在隐含层增设记忆模块,可使信息较长时间地储存和遗传,其结构如图 1


所示。


fdaa91c48a8c476793f80bc2cb793656.png


📚2 运行结果


7c50d8b65d8a4f75b8735aae48de5c3a.png


b233eb040e2e4b88b93fd981a647cffd.png


[array([438.46592244, 238.70076528, 225.36197401, 0.5375739 ,
99.97048442])]
17/17 [==============================] - 1s 10ms/step
0.5900796219852575
[array([470.04935822, 205.49285749, 20.59639042, 0.51696884,
71.80868853])]
17/17 [==============================] - 1s 8ms/step
0.5963260932033305
[array([356.62748283, 408.3021335 , 115.77116804, 0.92504373,
197.76297335])]
17/17 [==============================] - 1s 9ms/step
0.3658408520955597
第0次迭代
[array([498.99992122, 445.76211515, 193.23313446, 0.99 ,
197.3849546 ])]
17/17 [==============================] - 1s 13ms/step
0.16002665645771263
第1次迭代
[array([500. , 500. , 288.32703023, 0.99 ,
296.60939568])]
17/17 [==============================] - 1s 15ms/step
0.1059403982865944
第2次迭代
[array([500. , 500. , 220.51743525, 0.99 ,
300. ])]
17/17 [==============================] - 1s 14ms/step
0.1160862607613431
第3次迭代
[array([500. , 500. , 356.39882544, 0.99 ,
300. ])]
17/17 [==============================] - 1s 16ms/step
0.2353825648402862
第4次迭代
[array([500. , 500. , 236.11113691, 0.99 ,
300. ])]
17/17 [==============================] - 1s 14ms/step
0.14742549247204406
最优适应度值: [0.1059404]
最优解: [[500. 500. 288.32703023 0.99 296.60939568]]
17/17 [==============================] - 1s 15ms/step
======Predicting Finished======
r2 rmse mae mape
0 0.755368 0.07351 0.049911 0.268844
Running time: 496.561s 


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]邴其春,张伟健,沈富鑫,胡嫣然,高鹏,刘东杰.基于变分模态分解和LSTM的短时交通流预测[J].重庆理工大学学报(自然科学),2023,37(05):169-177.


🌈4 Python代码实现

相关文章
|
14天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
13天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
22 1
|
14天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
16天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
36 2
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
57 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
4月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
59 0
|
4月前
|
机器学习/深度学习 自然语言处理 TensorFlow
下一篇
无影云桌面