【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

简介: 【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 变分模态分解算法


1.2 蜣螂优化算法


1.3 LSTM


📚2 运行结果


🎉3 参考文献


🌈4 Python代码实现


💥1 概述

1.1 变分模态分解算法

变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量


混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过


程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。


1.2 蜣螂优化算法

蜣螂优化算法是最新的群智能优化算法,2022年底提出,里面有相关的文章和代码,可以结合自身课题进行研究,值得推荐,亲用优化效果非常的好。


1.3 LSTM

长短时记忆( long-short term memory,LSTM) 神经网络是 Hochreiter 等提出的一种改进后的循环式神经网络,可有效解决循环式神经网络存在的梯度爆炸和阶段性梯度消失的问题。在传统


循环式神经网络基础上,在隐含层增设记忆模块,可使信息较长时间地储存和遗传,其结构如图 1


所示。


fdaa91c48a8c476793f80bc2cb793656.png


📚2 运行结果


7c50d8b65d8a4f75b8735aae48de5c3a.png


b233eb040e2e4b88b93fd981a647cffd.png


[array([438.46592244, 238.70076528, 225.36197401, 0.5375739 ,
99.97048442])]
17/17 [==============================] - 1s 10ms/step
0.5900796219852575
[array([470.04935822, 205.49285749, 20.59639042, 0.51696884,
71.80868853])]
17/17 [==============================] - 1s 8ms/step
0.5963260932033305
[array([356.62748283, 408.3021335 , 115.77116804, 0.92504373,
197.76297335])]
17/17 [==============================] - 1s 9ms/step
0.3658408520955597
第0次迭代
[array([498.99992122, 445.76211515, 193.23313446, 0.99 ,
197.3849546 ])]
17/17 [==============================] - 1s 13ms/step
0.16002665645771263
第1次迭代
[array([500. , 500. , 288.32703023, 0.99 ,
296.60939568])]
17/17 [==============================] - 1s 15ms/step
0.1059403982865944
第2次迭代
[array([500. , 500. , 220.51743525, 0.99 ,
300. ])]
17/17 [==============================] - 1s 14ms/step
0.1160862607613431
第3次迭代
[array([500. , 500. , 356.39882544, 0.99 ,
300. ])]
17/17 [==============================] - 1s 16ms/step
0.2353825648402862
第4次迭代
[array([500. , 500. , 236.11113691, 0.99 ,
300. ])]
17/17 [==============================] - 1s 14ms/step
0.14742549247204406
最优适应度值: [0.1059404]
最优解: [[500. 500. 288.32703023 0.99 296.60939568]]
17/17 [==============================] - 1s 15ms/step
======Predicting Finished======
r2 rmse mae mape
0 0.755368 0.07351 0.049911 0.268844
Running time: 496.561s 


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]邴其春,张伟健,沈富鑫,胡嫣然,高鹏,刘东杰.基于变分模态分解和LSTM的短时交通流预测[J].重庆理工大学学报(自然科学),2023,37(05):169-177.


🌈4 Python代码实现

相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
217 55
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
5天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
30天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
72 3
|
1月前
|
缓存 大数据 C语言
python优化
python优化
40 5
|
2月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
55 6
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
71 8
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
4月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!

热门文章

最新文章