PyTorch: nn网络层-卷积层

简介: PyTorch: nn网络层-卷积层

文章和代码已经归档至【Github仓库:https://github.com/timerring/dive-into-AI 】或者公众号【AIShareLab】回复 pytorch教程 也可获取。

nn网络层-卷积层

1D/2D/3D 卷积

卷积有一维卷积、二维卷积、三维卷积。一般情况下,卷积核在几个维度上滑动,就是几维卷积。比如在图片上的卷积就是二维卷积。

一维卷积

二维卷积

三维卷积

二维卷积:nn.Conv2d()

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros')

这个函数的功能是对多个二维信号进行二维卷积,主要参数如下:

  • in_channels:输入通道数
  • out_channels:输出通道数,等价于卷积核个数
  • kernel_size:卷积核尺寸
  • stride:步长
  • padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
  • dilation:空洞卷积大小,默认为 1,这时是标准卷积,常用于图像分割任务中,主要是为了提升感受野
  • groups:分组卷积设置,主要是为了模型的轻量化,如在 ShuffleNet、MobileNet、SqueezeNet 中用到
  • bias:偏置

卷积尺寸计算

简化版卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 $k \times k$,stride 为 $s$,padding 的像素数为 $p$,图片经过卷积之后的尺寸 $O$ 如下:

$O = \displaystyle\frac{I -k + 2 \times p}{s} +1$

下面例子的输入图片大小为 $5 \times 5$,卷积大小为 $3 \times 3$,stride 为 1,padding 为 0,所以输出图片大小为 $\displaystyle\frac{5 -3 + 2 \times 0}{1} +1 = 3$。

完整版卷积尺寸计算

完整版卷积尺寸计算考虑了空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 $k \times k$,stride 为 $s$,padding 的像素数为 $p$,dilation 为 $d$,图片经过卷积之后的尺寸 $O$ 如下:。

$O = \displaystyle\frac{I - d \times (k-1) + 2 \times p -1}{s} +1$

卷积网络示例

这里使用 input * channel 为 3,output_channel 为 1 ,卷积核大小为 $3 \times 3$ 的卷积核nn.Conv2d(3, 1, 3),使用nn.init.xavier_normal*()方法初始化网络的权值。代码如下:

import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed

set_seed(3)  # 设置随机种子

# ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB')  # 0~255

# convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0)    # C*H*W to B*C*H*W

# ================================= create convolution layer ==================================

# ================ 2d
flag = 1
# flag = 0
if flag:
    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)
    # 初始化卷积层权值
    nn.init.xavier_normal_(conv_layer.weight.data)
    # nn.init.xavier_uniform_(conv_layer.weight.data)
    # calculation
    img_conv = conv_layer(img_tensor)

# ================ transposed
# flag = 1
flag = 0
if flag:
    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(input_channel, output_channel, size)
    # 初始化网络层的权值
    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

通过conv_layer.weight.shape查看卷积核的 shape 是(1, 3, 3, 3),对应是(output_channel, input_channel, kernel_size, kernel_size)。所以第一个维度对应的是卷积核的个数,每个卷积核都是(3,3,3)。虽然每个卷积核都是 3 维的,执行的却是 2 维卷积。下面这个图展示了这个过程。

也就是每个卷积核在 input_channel 维度再划分,这里 input_channel 为 3,那么这时每个卷积核的 shape 是(3, 3)。3 个卷积核在输入图像的每个 channel 上卷积后得到 3 个数,把这 3 个数相加,再加上 bias,得到最后的一个输出。

转置卷积:nn.ConvTranspose()

转置卷积又称为反卷积 (Deconvolution) 和部分跨越卷积 (Fractionally strided Convolution),用于对图像进行上采样。

正常卷积如下:

原始的图片尺寸为 $4 \times 4$,卷积核大小为 $3 \times 3$,$padding =0$,$stride = 1$。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 $16 \times 1$ 的矩阵 $I_{16 \times 1}$,

为什么是16 * 1,因为16是它所有的像素点个数,1是它的图片张数。

卷积核可以看作 $4 \times 16$ 的矩阵 $K_{4 \times 16}$,其中,那么输出是 $K_{4 \times 16} \times I_{16 \times 1} = O_{4 \times 1}$ 。(是卷积核 * 图像)

这里的4是输出特征图像素值的总个数,16是通过卷积核补零,符合原图片像素点个数得到的。

转置卷积如下:

原始的图片尺寸为 $2 \times 2$,卷积核大小为 $3 \times 3$,$padding =0$,$stride = 1$。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 $4 \times 1$ 的矩阵 $I_{4 \times 1}$,

这里的4同样是原图的像素点个数。

卷积核可以看作 $4 \times 16$ 的矩阵 $K_{16 \times 4}$,

这里的4不再是通过补零得到的,而是通过剔除得到的。如上图,本来卷积核有9个像素点,但是在实际的情况中卷积核最大只能计算到4个像素点,因此这里就是4。

16是根据输入公式计算得到的输出图片的大小。

那么输出是 $K_{16 \times 4} \times I_{4 \times 1} = O_{16 \times 1}$ 。

正常卷积核转置卷积矩阵的形状刚好是转置关系,因此称为转置卷积,但里面的权值不是一样的,卷积操作也是不可逆的,简单来讲,就是一张图片经过卷积,然后再经过转置卷积,无法得到原来的图片。

PyTorch 中的转置卷积函数如下:

nn.ConvTranspose2d(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True,
                 dilation=1, padding_mode='zeros')

和普通卷积的参数基本相同。

转置卷积尺寸计算

简化版转置卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 $k \times k$,stride 为 $s$,padding 的像素数为 $p$,图片经过卷积之后的尺寸 $O$ 如下,刚好和普通卷积的计算是相反的:

$O = (I-1) \times s + k$

$\text { out } _{\text {size }}=\left(\text { in }_{\text {size }}-1\right) * s t r i d e+\text { kernel }_{\text {size }}$

完整版简化版转置卷积尺寸计算

$O = (I-1) \times s - 2 \times p + d \times (k-1) + out_padding + 1$

转置卷积代码示例如下:

import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed

set_seed(3)  # 设置随机种子

# ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB')  # 0~255

# convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0)    # C*H*W to B*C*H*W

# ================================= create convolution layer ==================================

# ================ 2d
# flag = 1
flag = 0
if flag:
    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)
    # 初始化卷积层权值
    nn.init.xavier_normal_(conv_layer.weight.data)
    # nn.init.xavier_uniform_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================ transposed
flag = 1
# flag = 0
if flag:
    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(input_channel, output_channel, size)
    # 初始化网络层的权值
    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

转置卷积前后图片显示如下,左边原图片的尺寸是 (512, 512),右边转置卷积后的图片尺寸是 (1025, 1025)。

转置卷积后的图片一般都会有棋盘效应,像一格一格的棋盘,这是转置卷积的通病。

关于棋盘效应的解释以及解决方法,推荐阅读Deconvolution And Checkerboard Artifacts

目录
相关文章
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
339 1
|
4天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
203 59
|
3月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
2月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
191 1
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
83 1
|
4月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
57 0
|
6月前
|
并行计算 PyTorch 程序员
老程序员分享:Pytorch入门之Siamese网络
老程序员分享:Pytorch入门之Siamese网络
110 0
下一篇
DataWorks