【无功优化】基于改进遗传算法的电力系统无功优化研究【IEEE30节点】(Matlab代码实现)

简介: 【无功优化】基于改进遗传算法的电力系统无功优化研究【IEEE30节点】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 入门介绍


1.2 无功功率与电压的关系


1.3 无功功率与有功损耗的关系


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

1.1 入门介绍

无功功率与电压水平有着密切的联系,若要保障较好的电压质量,首先应满足无功的平衡及合理分布。当系统产生过多的无功功率时,电力设备的运行电压会因此而上升,严重情况下会导致越上限运行,而且很容易引起设备绝缘损坏,对系统的运行带来很大威胁;当系统中的无功不足时,设备的运行电压会降低,并可能导致低于下限运行,严重时可能造成地区电网的电压崩溃,由此带来的损失难以估量。而对电力系统进行无功优化可以有效地改善电压运行质量且能降低网络有功损耗I3l。本文研究无功运行优化,它指的是在电网运行时,在确定有功潮流且满足多种约束条件下,调整发电机端电压、变压器的分接头等这些参数使一个或多个指标达到最优状态。电力系统无功优化是多约束、非线性的优化问题。即在已知系统运行方式和控制变量时,建立合适的数学模型,然后对这些控制变量进行调节以保证整个系统在约束范围内运行,并使系统的某些目标达到最优状态。其中,在建立数学模型时,必须确认模型的目标函数、变量取值范围及功率约束范围。


1.2 无功功率与电压的关系

无功潮流的分布与节点电压有着紧密的联系。由于输电线路与变压器模型相似,下面以


简单的输电线路模型为基础讨论无功和电压之间的关系,简单输电线路模型如图 2-1 所示。




由式(2-2)可以看出,无功的大小和流动方向与线路两端电压的大小有关,即由高电压


的一侧传输到低电压的一侧。当输电线路在远距离传输功率时,会增加对无功的需求,这样


就必须降低电压来确保无功平衡,造成输电线路及用电设备的电压都无法得到满足,同时也


会产生较大电能损耗。


1.3 无功功率与有功损耗的关系

有功损耗在衡量电力系统经济运行时发挥着重要作用,并与无功功率有着紧密联系,有


功损耗包括两部分,其中线路的有功损耗公式为:



从(2-3)与(2-4)两式可以得知,当传输一定的有功功率时,有功损耗随着网络中流动


的无功的增多而增多,无功的流动成为影响有功损耗的重要原因[40]。一般情况下,系统中的


电阻和变压器的铜耗由电气设备本身所决定,改造所需要的花费很多。因此,为了降低有功


损耗需要对系统中的无功进行合理地优化调节。


遗传算法(Genetic Algorithm,简称GA)是由Holland教授等人提出的[43]。“物竞天择、适者生存、优胜劣汰”是GA的核心思想,其原理简单,编程很容易实现,且它对大部分领域的限制也不高。经过几十年的发展,成功地应用到不同学科和领域,如自动控制、组合优化及机器学习等。它与传统的算法有着很大区别,尤其是在应用于一些大型、复杂的系统时,可以发挥很好的鲁棒性,能够较快地找到问题的最优解,很适用于无功优化等这种非线性优化问题。但是国内外学者并不满足于此,于是考虑对算法自身参数进行改进或者与其它算法相融合,以期取得更好的优化结果。

GA在优化各种各样的问题时,第一步需要对该问题的变量编码,其中编码方式也因所需求解问题的不同而不同,这样就会得到一组数字串,该串上的每个数字就代表一位基因,与生物体内的染色体很相似。染色体或个体可以当作问题中的某个解,由于种群包含了多个数字串,也就是包含了多个解[44]。改进遗传算法讲解见第4部分。


📚2 运行结果



🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]刘辉. 基于改进遗传算法的电力系统无功优化研究[D].东北农业大学,2021.DOI:10.27010/d.cnki.gdbnu.2021.000504.


[2]昌思远. 基于改进遗传算法的电力系统无功优化算法研究[D].武汉理工大学,2018.


🌈4 Matlab代码实现


相关文章
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
27天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
12天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
13天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
13天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
32 3
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章