基于粒子群优化算法的面向综合能源园区的三方市场主体非合作交易方法(Matlab代码实现)

简介: 基于粒子群优化算法的面向综合能源园区的三方市场主体非合作交易方法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

随着全球范围内的温室效应和能源危机不断加剧,人类社会的能源需求与自然环境的承载力之间


的矛盾日益凸显。寻求安全高效、低碳清洁 的 能源运营模式和市场服务机制,打破现有能源供给体系的技术壁垒,实现能源的供给侧改革,成为了世界 各国关注的焦点,耦合电力、天然气、供热、交通等多种能源系统,实现不同能源梯级高效利用的综合能源系统(IES)成为了研


究热点。而园区IES作为多能源系统底层耦合终端,在可再生能源就地消纳、提高需求侧调度灵活性、实现多能互补协同利用等方面具有重要的现实意义。


综合能源园区结构如图1所示,包 括 1 个 园 区 能 量 交 易 中 心 (energytrading center,ETC)和3个市场交易主体。市场交易主体包括园区能源运营商、含分布式光伏的用户、EV 充电代理商3个部分。园区 ETC 和市场交易主体之间的交易信息交流和调度指令传达通过各自的能量管理系统(energymanagementsystem,EMS)进行, EMS负责制定自 身 能 源 报 价 策 略、管 理 用 能 需 求,园区 ETC根据市场交易机制对信息进行采集、分配、计算。综合能源园区生产的电能依照底层就地消纳的原则,并不向上级配电网售电。


而在未来包含冷、热、电、气、交通等能源系统的综合能 源 市 场 领 域,则 需 要 同 时 考 虑 如 分 布 式 供能[14-17]、柔 性 负 荷[16-17]、EV[16]等 耦 合 不 同 能 源 系


统、具有不同属性的交易主体。文献[14]通过构建以分布式能源产消者、独立售电商和一般用户为主体的区域电力市场模型,提出了总体共赢的交易决策模型。文献[15]建立了包含社区运营商与产消者群的社区能源互联网博弈模型。文献[16]研究了包含能量管理中 心、空 调、EV 等 负 荷 的 用 能 系 统,提出并求解了基于实时定价策略的需求响应算法。文献[17]考虑新能源发电和负荷的不确定性,建立了虚拟电厂的斯塔伯格动态博弈模型。然而大部分研究成果中所建立的交易决策模型本质上仍基于对电力系统的调控,其他能源系统仅作为调控环节参与市场运行,而无过多的市场交易行为,多能耦合的效果不够显著。


c9af7ac850cb4bf3bd7542fb51d3151a.png


在综合能源园区中,三方市场主体均以自身利 益最大化为目标参与市场交易。其中,能源运营商


是市场的主导者,其他市场交易主体以能源运营商的定价策略为基准制定自身的售价或用能策略。


8cef11a057bf4c289ab784e897ac1118.png


📚2 运行结果


3fd65575e38144e0aa77fb369a84e154.png


9a32bd52445a4016b6c854624aca8283.png


db3b1f5560c74d65bfeb5480e27af02a.png


ab92d7d71595457fb87fcd25950e83de.png


76f6bbe80d964bdead4b107a67a8b446.png


51d2543c89de4190b7a38faaa21856bb.png


8128f236c10e436a9de0f3fbbf753d6f.png


667596ef6fa341c99a7581477cc8da62.png


782b3d5a24da4cd4902a0f59ac5d1717.png


31fd1f054a1f41159cb6f9e784a04d6d.png


61c59f10cf294b8c8fa7d6327bb3595f.png


d16219aa5fd841c8928cd9d7bd2059cc.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]杨铮,彭思成,廖清芬等.面向综合能源园区的三方市场主体非合作交易方法[J].电力系统自动化,2018,42(14):32-39+47.


🌈4 Matlab代码实现


相关文章
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
22天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。

热门文章

最新文章