【VRP问题】基于遗传算法求解带容量的车辆路径规划问题(优化目标:运输成本)附Matlab代码

简介: 【VRP问题】基于遗传算法求解带容量的车辆路径规划问题(优化目标:运输成本)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

VRP(Vehicle Routing Problem)问题是一种典型的车辆路径规划问题,旨在确定一组良好的路线,以满足多个客户的需求并同时最小化总运输成本。基于遗传算法的求解方法可以有效地解决这类问题。以下是基于遗传算法求解带容量的VRP问题的基本步骤:

  1. 表示个体:首先定义遗传算法中的个体表示方式。可以使用染色体编码来表示路线,其中每个基因代表客户的访问顺序。
  2. 初始化种群:随机生成初始种群,每个个体即代表一个可行的路线方案,可以考虑到约束条件如车辆容量、服务时间窗口等。
  3. 适应度函数:定义适应度函数,该函数评估个体的优劣程度。在这里,适应度函数可以根据总运输成本来评估路线的质量,其中运输成本可以包括车辆耗油量、行驶距离等与成本相关的指标。
  4. 交叉操作:设计交叉操作,通过基因的交叉和重组生成新一代的个体。常用的交叉操作有部分映射交叉(PMX)、顺序交叉(OX)等。
  5. 变异操作:为了保持种群的多样性,引入变异操作对个体进行微小的基因改变 环境选择:根据适应度函数指导,使用选择种群中选择出优秀个体作为下一代的父代。
  6. 迭代与收敛:重复执行交叉、变异、选择等步骤,直至达到停止准则(如收敛性或迭代次数)。
  7. 输出结果:最终得到进化过程中产生的最优解,即一组能够满足约束条件并且具有最小运输成本的车辆路线规划需要注意的是,针对特定的VRP问题,可能还需要根据实际情况对遗传算法进行调优和参数设置,以获得更好的性能和效果。

⛄ 部分代码

path=Parent(i,L1:L2-1);L=length(path);for k=1:L    if k==1        fitness_value_P(i)=fitness_value_P(i)+sum(data(path,3))*dis(1,path(1))*3;    else        fitness_value_P(i)=fitness_value_P(i)+sum(data(path(k:L),3))*dis(path(k-1),path(k))*3;    end        end fitness_value_P(i)=fitness_value_P(i)+dis(path(L),1)*2;

⛄ 运行结果

⛄ 参考文献

[1] 严秀.基于改进遗传算法的VRP问题研究[D].安徽大学[2023-07-06].DOI:10.7666/d.d157911.

[2] 卞逢源.连锁便利店配送中心选址—路径联合优化研究[D].北京交通大学[2023-07-06].

[3] 张露.基于改进遗传算法求解带时间窗车辆路径规划问题[J].中国物流与采购, 2020(14):4.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


相关文章
|
8天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
8天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
104 68
|
10天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
10天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
127 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章