【SSA-LSTM】基于麻雀算法优化LSTM 模型预测研究(Matlab代码实现)

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 【SSA-LSTM】基于麻雀算法优化LSTM 模型预测研究(Matlab代码实现)

💥1 概述

本研 究 利 用 麻 雀搜索算法 ( SSA) 以 提 高LSTM 模型准确度为优化目标,以 LSTM 模型中超

参数为优化对象,对 LSTM 进行优化,搭建 SSA-LSTM 神经网络模型; 将 SSA-LSTM 模型参数的预测。


1.1 麻雀搜索算法

麻雀搜索算法模拟麻雀觅食过程中行为,将种群的麻雀分为三类,一类是生产者,负责寻找食物,引导种群前往食物丰富的区域; 另一类是跟随者,在觅食的过程中它们会时刻观察着生产者,一旦发现生产者找到了更好的食物,会立刻放弃自己现在的食物,转向生产者。此外种群中还有一 定比例的警戒者,没有危险时就在种群中随意走动,一旦发现了危险就立刻向安全区域移动。在


迭代的过程中,他们按照会一定的规则进行更新位置信息。生产者:

如果 i 大于 n /2,则表示当前的麻雀位置不好,可能会挨饿,因此需要飞往更远的地方去觅食。如果 i 小于或等于 n /2,说明当前麻雀位置尚可,只需向位置最好的麻雀靠近即可。


当 fi >fg 时,代表当前麻雀处于种群的边缘,极易受到攻击。当 fi = fi 时,表示处于种群中心的

麻雀意识到危险,开始向其他麻雀移动,减少被捕食的风险。

LSTM 由遗忘门、输入门和输出门三部分组成。通过巧妙的结构设计( 图 3) ,很好地解决了

RNN 对于较长的时间序列状态无法传递的问题。

1.2 长短期记忆神经网络

RNN 是机器学习方法之一,主要用于处理时间序列数据。RNN 的网络结构如图 2 所示,有一


个自连接的隐藏层,它的当前状态可以依靠前一 时刻输出进行更新,因此可以解决时间序列的长


期依赖问题。 但是对于较长的时间序列,在实际 RNN 的使用过程中,会出现梯度消失和梯度爆炸的现象。为了解决以上问题,提出了 LSTM。LSTM 是基于RNN 的一种改进,它保留了 RNN 自连接的隐藏层,而且隐藏层中的节点更为复杂,可以实现较长时间序列的信息保留

📚2 运行结果

部分代码:


%% 获取优化参数
numHiddenUnits = round(x(1));%LSTM网路包含的隐藏单元数目
maxEpochs = round(x(2));%最大训练周期
InitialLearnRate = x(3);%初始学习率
L2Regularization = x(4);%L2参数
%设置网络
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits)
    fullyConnectedLayer(numResponses)
    regressionLayer];
%指定训练选项,采用cpu训练, 这里用cpu是为了保证能直接运行,如果需要gpu训练,改成gpu就行了,且保证cuda有安装
options = trainingOptions('adam', ...
    'MaxEpochs',maxEpochs, ...
    'ExecutionEnvironment' ,'cpu',...
    'InitialLearnRate',InitialLearnRate,...
    'GradientThreshold',1, ...
    'L2Regularization',L2Regularization, ...
    'Verbose',0);
%'Plots','training-progress'
%训练LSTM
net = trainNetwork(XTrain,YTrain,layers,options);
%训练集测试
PredictTrain = predict(net,XTrain, 'ExecutionEnvironment','cpu');
%测试集测试
PredictTest = predict(net,XTest, 'ExecutionEnvironment','cpu');
%训练集mse
mseTrain = mse(YTrain-PredictTrain);
%测试集mse
mseTest = mse(YTest-PredictTest);
%% 测试集准确率
fitness =mseTrain+mseTest;
disp('训练结束....')
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陈玺. 基于ISSA-LSTM的超短期风电功率预测[D].宁夏大学,2022.DOI:10.27257/d.cnki.gnxhc.2022.000273.


[2]林彬彬,袁泉,田志新,潘显斌,周文宗,徐震.基于SSA- LSTM模型的黄鳝池溶氧预测研究[J].渔业现代化,2023,50(01):71-79.

🌈4 Matlab代码实现

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
5天前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
22 4
|
5天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
1月前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
347 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
211 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
306 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
12月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
12月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章