基于袋鼠云实时开发平台开发 FlinkSQL 任务的实践探索

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 袋鼠云实时开发平台StreamWorks,⼀直致⼒于降低 FlinkSQL 的开发门槛,让更多的数据开发掌握实时开发能⼒,普及实时计算的应⽤。本文为大家介绍在袋鼠云实时开发平台开发 FlinkSQL 任务的四种⽅式。

随着业务的发展,实时场景在各个⾏业中变得越来越重要。⽆论是⾦融、电商还是物流,实时数据处理都成为了其中的关键环节。Flink 凭借其强⼤的流处理特性、窗⼝操作以及对各种数据源的⽀持,成为实时场景下的⾸选开发⼯具。


FlinkSQL 通过 SQL 语⾔⾯向数据开发提供了更友好的交互⽅式,但是其开发⽅式和离线开发 SparkSQL 仍然存在较⼤的差异。袋鼠云实时开发平台StreamWorks,⼀直致⼒于降低 FlinkSQL 的开发门槛,让更多的数据开发掌握实时开发能⼒,普及实时计算的应⽤。


本文将为大家简单介绍在袋鼠云实时开发平台开发 FlinkSQL 任务的四种⽅式。

脚本模式

该模式是最基础的开发⽅式,数据开发人员在平台 IDE 中通过 FlinkSQL 代码,完成 Flink 表定义和业务逻辑加⼯。代码如下:

-- 定义数据源表
CREATE TABLE server_logs (
client_ip STRING,
client_identity STRING,
userid STRING,
user_agent STRING,
log_time TIMESTAMP(3),
request_line STRING,
status_code STRING,
size INT
) WITH (
'connector ' = 'faker ',
'fields .client_ip .expression ' = '#{Internet .publicIpV4Address} ',
'fields .client_identity .expression ' =  '- ',
'fields .userid .expression ' =  '- ',
'fields .user_agent .expression ' = '#{Internet .userAgentAny} ',
'fields .log_time .expression ' =  '#{date .past ' '15 ' ', ' '5 ' ', ' 'SECONDS ' '} ',
'fields .request_line .expression ' = '#{regexify ' '(GET |POST |PUT |PATCH){1} ' '} #{regexify ' '(/search\ .html|/login\ .html|/prod\ .html|c
'fields .status_code .expression ' = '#{regexify ' '(200 |201 |204 |400 |401 |403 |301){1} ' '} ',
'fields .size .expression ' = '#{number .numberBetween ' '100 ' ', ' '10000000 ' '} '
);
-- 定义结果表,  实际应用中会选择  Kafka、JDBC 等作为结果表
CREATE TABLE client_errors (
log_time TIMESTAMP(3),
request_line STRING,
status_code STRING,
size INT
) WITH (
'connector ' = 'stream-x '
);
-- 写入数据到结果表
INSERT INTO client_errors
SELECT
log_time,
request_line,
status_code,
size
FROM server_logs
WHERE status_code SIMILAR TO '4[0-9][0-9] ';

脚本模式的优缺点

优点:灵活性⾼。

缺点:Flink表定义逻辑复杂,如果不熟悉数据源插件,很难记住需要维护哪些参数;如果该任务涉及多张表,代码块中存在⼤段表定义代码,不⽅便排查业务逻辑。

向导模式

基于脚本模式存在的缺点,袋鼠云实时开发平台将 Flink 表定义逻辑抽象成了可视化配置的功能,引导数据开发⼈员通过⻚⾯配置化的⽅式完成 Flink 表定义,让数据开发更专注在业务逻辑的加⼯。

向导模式是在开发⻚⾯的配置项中根据⻚⾯引导,完成 Flink 表的源表、维表、结果表的映射,然后在 IDE 中直接引⽤,读写对应的 Flink 表,完成逻辑开发。

· 平台默认提供各类数据源的源表、维表、结果表常⽤配置项;

· 对于各种⾼级参数,平台也提供了维护⾃定义参数的 key/value ⽅式来满⾜灵活性要求。

Catalog 模式

在向导模式中,我们可以借助配置化的⽅式快速完成表映射,但同时也存在⼀个问题,这些映射表只能在当前任务中被引⽤,⽆法在不同的任务中复⽤。


但是在真实的实时数仓建设过程中,我们常会遇到下⾯这种场景:某⼀个 dws 层级的 kafka topic,会在多个 ads 任务中被作为源表使⽤。⽽在每个 ads 任务开发过程中,都需要为同⼀个 dws topic 做⼀次相同的 Flink 映射。


为了解决这种重复映射的开发⼯作,我们可以借助 Flink Catalog 功能,将映射表的元数据信息进⾏持久化存储,这样就可以在不同的任务中重复引⽤。具体使⽤⽅法如下(以平台的 DT Catalog 为例):

Catalog ⽬录维护

· 先在 DT Catalog 下创建⼀个名为 stream_warehouse 的 catalog

· 然后在该 catalog 下根据数仓层级或者业务域创建不同的 database

Flink 映射表创建

· ⽅式⼀:在⽬录中 hover database,根据引导通过配置化⽅式完成 Flink 表映射

· ⽅式⼆:在 IDE 中,通过 Create DDL 完成创建,注意要指定对应的 catalog.database 路径

CREATE TABLE stream_warehouse .dws .orders (
order_uid  BIGINT,
product_id BIGINT,
price      DECIMAL(32, 2),
order_time TIMESTAMP(3)
) WITH (
'connector ' = 'datagen '
);

FlinkSQL 任务开发

完成上面两个步骤,⼀张元数据持久化存储的 Flink 映射表就创建好了。我们在开发任务的时候,就可以直接通过 catalog.database.table 的⽅式,引⽤我们需要的表。

INSERT INTO stream_warehouse .ads_db .client_errors
SELECT
log_time,
request_line,
status_code,
size
FROM stream_warehouse .dws_db .server_logs

Demo 模式

学会了上⾯三种开发⽅式后,如果你还对 FlinkSQL 的开发逻辑⽐较陌⽣,那么建议你可以通过袋鼠云实时开发平台代码模版中⼼去完成⼀个完整的任务开发。


在模版中⼼,我们提供了⼆⼗余种常⻅的业务场景及其对应的 FlinkSQL 代码逻辑,如各类窗⼝的写法、各类 Join 的写法等等,你可以根据真实的业务场景去套⽤模版,快速地完成任务开发。

总结

每种开发模式没有绝对的好坏之分,需要根据不同企业的实时计算场景和阶段,采⽤不同的开发模式,才能真正达到降本增效的目的。

· 当企业刚接触实时计算,数据开发⼈员对 FlinkSQL 熟悉度较低时,DEMO 模式是最好的选择;

· 当企业已经上⼿实时计算,但是任务量还不⼤时,脚本模式或者向导模式是不错的选择;

· 当企业实时计算达到⼀定规模,需要进⾏类似离线数仓的管理⽅式时,Catalog 模式是最优的选择。

《数据治理行业实践白皮书》下载地址:https://fs80.cn/380a4b

《数栈V6.0产品白皮书》下载地址:https://fs80.cn/cw0iw1

想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szalykfz

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术 qun」,交流最新开源技术信息,qun 号码:30537511,项目地址:https://github.com/DTStack

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
网络安全 数据安全/隐私保护 Windows
windows通过finalshell连接服务器
通过finnalshell连接服务器的流程
windows通过finalshell连接服务器
|
5月前
|
SQL 监控 IDE
实时开发IDE!数据开发效率开挂
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
实时开发IDE!数据开发效率开挂
|
10月前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
8512 18
资料合集|Flink Forward Asia 2024 上海站
|
11月前
|
数据采集 数据安全/隐私保护 开发者
非阻塞 I/O:异步编程提升 Python 应用速度
非阻塞 I/O:异步编程提升 Python 应用速度
|
11月前
|
消息中间件 存储 缓存
QPS多少,才算高并发 ?
本文详解高并发概念及 QPS 标准,大厂面试高频点,建议掌握收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
QPS多少,才算高并发 ?
|
10月前
|
UED
交互好且转化率高的表单设计技巧分享
表单在网页设计、app或者软件界面当中被广泛的使用,因而表单设计是个比较重要的工作
191 3
|
数据采集 监控 关系型数据库
CDC 与 Oceanbase 的激情碰撞:实时采集数据的震撼之旅,颠覆数据世界的神秘冒险!
【8月更文挑战第7天】在数据处理领域,实时采集变得至关重要。OceanBase是一款高性能、可扩展的分布式数据库。通过变更数据捕获(CDC)技术实时采集其数据是一项关键技术。利用如Debezium等工具,可以实现OceanBase的数据变动捕捉。示例代码展示了如何配置Debezium以监听OceanBase的数据变更。实际应用中需按业务需求定制数据处理逻辑,并实施监控与错误管理以保障采集的准确性和稳定性,从而为业务提供实时数据支持,推动创新发展。
348 1
|
SQL 资源调度 Kubernetes
【万字长文】详解Flink作业提交流程(一)
【万字长文】详解Flink作业提交流程
3769 0
【万字长文】详解Flink作业提交流程(一)
|
Shell 开发者 C++
`mypy` 是一个Python的静态类型检查器,它可以在不运行代码的情况下发现潜在的类型错误。
`mypy` 是一个Python的静态类型检查器,它可以在不运行代码的情况下发现潜在的类型错误。
|
存储 数据采集 DataWorks
2万字揭秘阿里巴巴数据治理平台DataWorks建设实践
阿里巴巴一直将数据作为自己的核心资产与能力之一,从最早的淘宝、天猫等电商业务,到后续的优酷、高德、菜鸟等板块,DataWorks、MaxCompute、Hologres等产品用一套技术体系来支持不同业务的发展与创新,为企业带来整体的“数据繁荣”。 数据繁荣为我们带来了红利,同时也带动了各类数据治理需求的井喷,特别是降本等需求的不断出现,阿里云DataWorks团队将13年的产品建设经验整理成最佳实践,从数据生产规范性治理、数据生产稳定性治理、数据生产质量治理、数据应用提效治理、数据安全管控治理、数据成本治理、数据治理组织架构及文化建设等7个方面为大家揭秘数据治理平台建设实践
31605 15
2万字揭秘阿里巴巴数据治理平台DataWorks建设实践