Node.js 中流操作实践

简介: 本文节选自 Node.js CheatSheet | Node.js 语法基础、框架使用与实践技巧,也可以阅读 JavaScript CheatSheet 或者 现代 Web 开发基础与工程实践 了解更多 JavaScript/Node.js 的实际应用。
本文节选自 Node.js CheatSheet | Node.js 语法基础、框架使用与实践技巧,也可以阅读 JavaScript CheatSheet 或者 现代 Web 开发基础与工程实践 了解更多 JavaScript/Node.js 的实际应用。

Stream 是 Node.js 中的基础概念,类似于 EventEmitter,专注于 IO 管道中事件驱动的数据处理方式;类比于数组或者映射,Stream 也是数据的集合,只不过其代表了不一定正在内存中的数据。。Node.js 的 Stream 分为以下类型:

  • Readable Stream: 可读流,数据的产生者,譬如 process.stdin
  • Writable Stream: 可写流,数据的消费者,譬如 process.stdout 或者 process.stderr
  • Duplex Stream: 双向流,即可读也可写
  • Transform Stream: 转化流,数据的转化者

Stream 本身提供了一套接口规范,很多 Node.js 中的内建模块都遵循了该规范,譬如著名的 fs 模块,即是使用 Stream 接口来进行文件读写;同样的,每个 HTTP 请求是可读流,而 HTTP 响应则是可写流。

在这里插入图片描述

Readable Stream


const stream = require('stream');
const fs = require('fs');

const readableStream = fs.createReadStream(process.argv[2], {
  encoding: 'utf8'
});

// 手动设置流数据编码
// readableStream.setEncoding('utf8');

let wordCount = 0;

readableStream.on('data', function(data) {
  wordCount += data.split(/\s{1,}/).length;
});

readableStream.on('end', function() {
  // Don't count the end of the file.
  console.log('%d %s', --wordCount, process.argv[2]);
});

当我们创建某个可读流时,其还并未开始进行数据流动;添加了 data 的事件监听器,它才会变成流动态的。在这之后,它就会读取一小块数据,然后传到我们的回调函数里面。 data 事件的触发频次同样是由实现者决定,譬如在进行文件读取时,可能每行都会触发一次;而在 HTTP 请求处理时,可能数 KB 的数据才会触发一次。可以参考 nodejs/readable-stream/_stream_readable 中的相关实现,发现 on 函数会触发 resume 方法,该方法又会调用 flow 函数进行流读取:


// function on
if (ev === 'data') {
  // Start flowing on next tick if stream isn't explicitly paused
  if (this._readableState.flowing !== false) this.resume();
}
...
// function flow
while (state.flowing && stream.read() !== null) {}

我们还可以监听 readable 事件,然后手动地进行数据读取:


let data = '';
let chunk;
readableStream.on('readable', function() {
  while ((chunk = readableStream.read()) != null) {
    data += chunk;
  }
});
readableStream.on('end', function() {
  console.log(data);
});

Readable Stream 还包括如下常用的方法:

  • Readable.pause(): 这个方法会暂停流的流动。换句话说就是它不会再触发 data 事件。
  • Readable.resume(): 这个方法和上面的相反,会让暂停流恢复流动。
  • Readable.unpipe(): 这个方法会把目的地移除。如果有参数传入,它会让可读流停止流向某个特定的目的地,否则,它会移除所有目的地。

在日常开发中,我们可以用 stream-wormhole 来模拟消耗可读流:


sendToWormhole(readStream, true);

Writable Stream


readableStream.on('data', function(chunk) {
  writableStream.write(chunk);
});

writableStream.end();

end() 被调用时,所有数据会被写入,然后流会触发一个 finish 事件。注意在调用 end() 之后,你就不能再往可写流中写入数据了。


const { Writable } = require('stream');

const outStream = new Writable({
  write(chunk, encoding, callback) {
    console.log(chunk.toString());
    callback();
  }
});

process.stdin.pipe(outStream);

Writable Stream 中同样包含一些与 Readable Stream 相关的重要事件:

  • error: 在写入或链接发生错误时触发
  • pipe: 当可读流链接到可写流时,这个事件会触发
  • unpipe: 在可读流调用 unpipe 时会触发

Pipe | 管道


const fs = require('fs');

const inputFile = fs.createReadStream('REALLY_BIG_FILE.x');
const outputFile = fs.createWriteStream('REALLY_BIG_FILE_DEST.x');

// 当建立管道时,才发生了流的流动
inputFile.pipe(outputFile);

多个管道顺序调用,即是构建了链接(Chaining):


const fs = require('fs');
const zlib = require('zlib');
fs.createReadStream('input.txt.gz')
  .pipe(zlib.createGunzip())
  .pipe(fs.createWriteStream('output.txt'));

管道也常用于 Web 服务器中的文件处理,以 Egg.js 中的应用为例,我们可以从 Context 中获取到文件流并将其传入到可写文件流中:

完整代码参考 Backend Boilerplate/egg

const awaitWriteStream = require('await-stream-ready').write;
const sendToWormhole = require('stream-wormhole');
...
const stream = await ctx.getFileStream();

const filename =
  md5(stream.filename) + path.extname(stream.filename).toLocaleLowerCase();
//文件生成绝对路径

const target = path.join(this.config.baseDir, 'app/public/uploads', filename);

//生成一个文件写入文件流
const writeStream = fs.createWriteStream(target);
try {
  //异步把文件流写入
  await awaitWriteStream(stream.pipe(writeStream));
} catch (err) {
  //如果出现错误,关闭管道
  await sendToWormhole(stream);
  throw err;
}
...

参照分布式系统导论,可知在典型的流处理场景中,我们不可以避免地要处理所谓的背压(Backpressure)问题。无论是 Writable Stream 还是 Readable Stream,实际上都是将数据存储在内部的 Buffer 中,可以通过 writable.writableBuffer 或者 readable.readableBuffer 来读取。当要处理的数据存储超过了 highWaterMark 或者当前写入流处于繁忙状态时,write 函数都会返回 falsepipe 函数即会自动地帮我们启用背压机制:

当 Node.js 的流机制监测到 write 函数返回了 false,背压系统会自动介入;其会暂停当前 Readable Stream 的数据传递操作,直到消费者准备完毕。


+===============+
|   Your_Data   |
+=======+=======+
        |
+-------v-----------+          +-------------------+         +=================+
|  Readable Stream  |          |  Writable Stream  +--------->  .write(chunk)  |
+-------+-----------+          +---------^---------+         +=======+=========+
        |                                |                           |
        |     +======================+   |        +------------------v---------+
        +----->  .pipe(destination)  >---+        |    Is this chunk too big?  |
              +==^=======^========^==+            |    Is the queue busy?      |
                 ^       ^        ^               +----------+-------------+---+
                 |       |        |                          |             |
                 |       |        |  > if (!chunk)           |             |
                 ^       |        |      emit .end();        |             |
                 ^       ^        |  > else                  |             |
                 |       ^        |      emit .write();  +---v---+     +---v---+
                 |       |        ^----^-----------------<  No   |     |  Yes  |
                 ^       |                               +-------+     +---v---+
                 ^       |                                                 |
                 |       ^   emit .pause();        +=================+     |
                 |       ^---^---------------------+  return false;  <-----+---+
                 |                                 +=================+         |
                 |                                                             |
                 ^   when queue is empty   +============+                      |
                 ^---^-----------------^---<  Buffering |                      |
                     |                     |============|                      |
                     +> emit .drain();     |  <Buffer>  |                      |
                     +> emit .resume();    +------------+                      |
                                           |  <Buffer>  |                      |
                                           +------------+  add chunk to queue  |
                                           |            <--^-------------------<
                                           +============+

Duplex Stream

Duplex Stream 可以看做读写流的聚合体,其包含了相互独立、拥有独立内部缓存的两个读写流, 读取与写入操作也可以异步进行:


                             Duplex Stream
                          ------------------|
                    Read  <-----               External Source
            You           ------------------|
                    Write ----->               External Sink
                          ------------------|

我们可以使用 Duplex 模拟简单的套接字操作:


const { Duplex } = require('stream');

class Duplexer extends Duplex {
  constructor(props) {
    super(props);
    this.data = [];
  }

  _read(size) {
    const chunk = this.data.shift();
    if (chunk == 'stop') {
      this.push(null);
    } else {
      if (chunk) {
        this.push(chunk);
      }
    }
  }

  _write(chunk, encoding, cb) {
    this.data.push(chunk);
    cb();
  }
}

const d = new Duplexer({ allowHalfOpen: true });
d.on('data', function(chunk) {
  console.log('read: ', chunk.toString());
});
d.on('readable', function() {
  console.log('readable');
});
d.on('end', function() {
  console.log('Message Complete');
});
d.write('....');

在开发中我们也经常需要直接将某个可读流输出到可写流中,此时也可以在其中引入 PassThrough,以方便进行额外地监听:


const { PassThrough } = require('stream');
const fs = require('fs');

const duplexStream = new PassThrough();

// can be piped from reaable stream
fs.createReadStream('tmp.md').pipe(duplexStream);

// can pipe to writable stream
duplexStream.pipe(process.stdout);

// 监听数据,这里直接输出的是 Buffer<Buffer 60 60  ... >
duplexStream.on('data', console.log);

Transform Stream

Transform Stream 则是实现了 _transform 方法的 Duplex Stream,其在兼具读写功能的同时,还可以对流进行转换:


                                 Transform Stream
                           --------------|--------------
            You     Write  ---->                   ---->  Read  You
                           --------------|--------------

这里我们实现简单的 Base64 编码器:


const util = require('util');
const Transform = require('stream').Transform;

function Base64Encoder(options) {
  Transform.call(this, options);
}

util.inherits(Base64Encoder, Transform);

Base64Encoder.prototype._transform = function(data, encoding, callback) {
  callback(null, data.toString('base64'));
};

process.stdin.pipe(new Base64Encoder()).pipe(process.stdout);

原文地址:https://segmentfault.com/a/1190000016328755

相关文章
|
2月前
|
存储 JavaScript 前端开发
使用JavaScript构建动态交互式网页:从基础到实践
【10月更文挑战第12天】使用JavaScript构建动态交互式网页:从基础到实践
140 1
|
2月前
|
JavaScript 前端开发 安全
TypeScript的优势与实践:提升JavaScript开发效率
【10月更文挑战第8天】TypeScript的优势与实践:提升JavaScript开发效率
|
2月前
|
JavaScript 前端开发 开发者
理解JavaScript中的原型链:基础与实践
【10月更文挑战第8天】理解JavaScript中的原型链:基础与实践
|
4月前
|
数据采集 Web App开发 JavaScript
利用Selenium和XPath抓取JavaScript动态加载内容的实践案例
利用Selenium和XPath抓取JavaScript动态加载内容的实践案例
|
11天前
|
存储 网络架构
Next.js 实战 (四):i18n 国际化的最优方案实践
这篇文章介绍了Next.js国际化方案,作者对比了网上常见的方案并提出了自己的需求:不破坏应用程序的目录结构和路由。文章推荐使用next-intl库来实现国际化,并提供了详细的安装步骤和代码示例。作者实现了国际化切换时不改变路由,并把当前语言的key存储到浏览器cookie中,使得刷新浏览器后语言不会失效。最后,文章总结了这种国际化方案的优势,并提供Github仓库链接供读者参考。
|
26天前
|
缓存 监控 JavaScript
Vue.js 框架下的性能优化策略与实践
Vue.js 框架下的性能优化策略与实践
|
28天前
|
缓存 负载均衡 JavaScript
构建高效后端服务:Node.js与Express框架实践
在数字化时代的浪潮中,后端服务的重要性不言而喻。本文将通过深入浅出的方式介绍如何利用Node.js及其强大的Express框架来搭建一个高效的后端服务。我们将从零开始,逐步深入,不仅涉及基础的代码编写,更会探讨如何优化性能和处理高并发场景。无论你是后端新手还是希望提高现有技能的开发者,这篇文章都将为你提供宝贵的知识和启示。
|
26天前
|
JavaScript 前端开发 API
Vue.js 3:深入探索组合式API的实践与应用
Vue.js 3:深入探索组合式API的实践与应用
|
2月前
|
前端开发 JavaScript
深入理解JavaScript中的事件循环(Event Loop):从原理到实践
【10月更文挑战第12天】 深入理解JavaScript中的事件循环(Event Loop):从原理到实践
44 1
|
1月前
|
Web App开发 JavaScript 前端开发
构建高效后端服务:Node.js与Express框架的实践
【10月更文挑战第33天】在数字化时代的浪潮中,后端服务的效率和可靠性成为企业竞争的关键。本文将深入探讨如何利用Node.js和Express框架构建高效且易于维护的后端服务。通过实践案例和代码示例,我们将揭示这一组合如何简化开发流程、优化性能,并提升用户体验。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和实用技巧。
下一篇
DataWorks