mnist数据集预处理实战

简介: mnist数据集预处理实战

mnist数据集可以从https://s3.amazonaws.com/img-datasets/mnist.npz 这个网址进行下载,下载的文件是一种称为npz格式的文件,这是numpy库生成的特有的压缩包格式。


numpy可以将numpy.array格式的数组以文件的形式进行序列化存储到文件,然后以反序列化的方式读取文件并直接还原成之前的数组。


存储的文件主要有两种形式:*.npy和*.npz。


npy的基本用法


import numpy as np


a = np.array([x for x in range(3)])


np.save('test-a', a) #文件的扩展名默认为.npy,因此完整文件名是test-a.npy


aa = np.load('test-a.npy')

print(aa) # [0 1 2]


npz的基本用法

当需要将多个数组保存在一个文件的时候,则需要用到npz文件格式存储。


import numpy as np

a = np.array([x for x in range(3)])

b = np.array([y for y in range(3,6)])


np.savez('test-ab.npz', a = a, b = b)


data = np.load('test-ab.npz')

print(data['a']) # [0 1 2]

print(data['b']) # [3 4 5]


了解npy和npz的基本用法之后,接下来将介绍keras中mnist的数据集加载过程。


from tensorflow import keras

import numpy as np


fname = 'mnist.npz'

path = keras.utils.get_file(fname=fname,

                   origin='https://s3.amazonaws.com/img-datasets/mnist.npz')


with np.load(path, allow_pickle=True) as f:

   x_train, y_train = f['x_train'], f['y_train']

   x_test, y_test = f['x_test'], ['y_test']

   

   print(x_train.shape) # (60000, 28, 28)

   print(x_test.shape)  # (10000, 28, 28)

注:keras中下载的数据集默认的存放位置是:~/.keras/datasets/ 目录下。


可以看到mnist数据集的处理流程是将28x28x1的图片文件处理成四个numpy数组:x_train, y_train, x_test, y_test。然后将这四个数组写入到文件生成mnist.npz文件。


在使用数据集的时候,利用keras的get_file()先从指定的URL地址下载npz文件,然后加载得到两个tuple,下面是keras官方提供的mnist数据集load_data()方法:


def load_data(path='mnist.npz'):

   """Loads the MNIST dataset.

   # Arguments

       path: path where to cache the dataset locally

           (relative to ~/.keras/datasets).

   # Returns

       Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.

   """

   path = get_file(path,

                   origin='https://s3.amazonaws.com/img-datasets/mnist.npz',

                   file_hash='8a61469f7ea1b51cbae51d4f78837e45')

   with np.load(path, allow_pickle=True) as f:

       x_train, y_train = f['x_train'], f['y_train']

       x_test, y_test = f['x_test'], f['y_test']

   return (x_train, y_train), (x_test, y_test)


目录
相关文章
|
2月前
|
计算机视觉
数据集学习笔记(三):COCO创建dataloader用于训练
如何使用COCO数据集创建dataloader进行训练,包括安装环境、加载数据集代码、定义数据转换、创建数据集对象以及创建dataloader。
53 5
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
|
5月前
|
机器学习/深度学习 存储 算法
MNIST数据集简介
【7月更文挑战第24天】MNIST数据集简介。
208 2
|
7月前
|
机器学习/深度学习 数据可视化 PyTorch
利用PyTorch实现基于MNIST数据集的手写数字识别
利用PyTorch实现基于MNIST数据集的手写数字识别
149 2
|
7月前
|
机器学习/深度学习 数据可视化 数据库
R语言对MNIST数据集分析:探索手写数字分类
R语言对MNIST数据集分析:探索手写数字分类
|
机器学习/深度学习 数据可视化 自动驾驶
图像分类 | 基于 MNIST 数据集
图像分类 | 基于 MNIST 数据集
|
机器学习/深度学习 存储 PyTorch
怎么调用pytorch中mnist数据集
怎么调用pytorch中mnist数据集
231 0
|
机器学习/深度学习 并行计算
探索用卷积神经网络实现MNIST数据集分类
探索用卷积神经网络实现MNIST数据集分类
206 0
|
机器学习/深度学习 存储 缓存
深度学习实战 fashion-mnist数据集预处理技术分析
深度学习实战 fashion-mnist数据集预处理技术分析
155 0
|
机器学习/深度学习 算法 数据处理
基于飞桨在MNIST数据集分类提升准确率到0.985以上实践
基于飞桨在MNIST数据集分类提升准确率到0.985以上实践
232 0

热门文章

最新文章

相关课程

更多

相关实验场景

更多