安装环境
# 安装Cython
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Cython
# 安装pycocotools
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
如果下面这个安装不起,就通过这个下载
然后pip install 即可
COCO训练数据加载代码
import torchvision.datasets as datasets
from torchvision import transforms
import torch,cv2
"""""""""""""""""""""""""""""""""COCO dataloader"""""""""""""""""""""""""""""
train_root = 'E:/dataset/Aquarium/train/'
val_root = 'E:/dataset/Aquarium/valid/'
font = cv2.FONT_HERSHEY_SIMPLEX
train_annFile = 'E:/dataset/Aquarium/annotations/train_annotations.coco.json'
val_annFile = 'E:/dataset/Aquarium/annotations/val_annotations.coco.json'
# 定义 coco collate_fn
def collate_fn_coco(batch):
return tuple(zip(*batch))
# 创建 coco dataset
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224), # 随机裁剪,在缩放成224*224
# transforms.RandomErasing(p=0.5), # 随机遮挡 概率0.5
transforms.RandomHorizontalFlip(), # 水平方向随机翻转,概率为0.5
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
"val": transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
coco_train = datasets.CocoDetection(train_root, train_annFile, transform=data_transform["train"])
coco_val = datasets.CocoDetection(val_root, val_annFile, transform=data_transform["val"])
# 创建 dataloader
train_loader = torch.utils.data.DataLoader(coco_train, batch_size=16 ,shuffle=True,num_workers=0,pin_memory=True,collate_fn=collate_fn_coco,drop_last=True)
val_loader = torch.utils.data.DataLoader(coco_val, batch_size=16 ,shuffle=False,num_workers=0,pin_memory=True,collate_fn=collate_fn_coco,drop_last=False)
# 可视化
for imgs, labels in train_loader:
for i in range(len(imgs)):
bboxes = []
ids = []
img = imgs[i]
labels_ = labels[i]
for label in labels_:
bboxes.append([label['bbox'][0],
label['bbox'][1],
label['bbox'][0] + label['bbox'][2],
label['bbox'][1] + label['bbox'][3]
])
ids.append(label['category_id'])
img = img.permute(1, 2, 0).numpy()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
for box, id_ in zip(bboxes, ids):
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), thickness=2)
cv2.putText(img, text=str(id_), org=(x1 + 5, y1 + 5), fontFace=font, fontScale=1,
thickness=2, lineType=cv2.LINE_AA, color=(0, 255, 0))
cv2.imshow('test', img)
cv2.waitKey()