【VRP问题】基于大邻域搜索算法LNS算法求解带容量的车辆路径规划问题附Matlab代码

简介: 【VRP问题】基于大邻域搜索算法LNS算法求解带容量的车辆路径规划问题附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

LNS算法是一种启发式算法,用于解决组合优化问题,其基本思想是在每一步中随机选择一个子问题,然后对其进行求解,并将得到的解用于更新全局最优解,不断迭代直到满足终止条件。LNS算法通常用于解决NP难问题,如TSP、VRP等。


VRP问题是指在有限数量的车辆和客户需求点之间建立最优的路径规划方案,使得总路程或总成本最小,同时满足车辆容量限制等约束条件。而LNS算法是一种启发式算法,用于解决组合优化问题,其基本思想是在每一步中随机选择一个子问题,然后对其进行求解,并将得到的解用于更新全局最优解,不断迭代直到满足终止条件。

下面是基于LNS算法求解带容量的车辆路径规划问题的大致步骤:

  1. 随机生成初始解。可以使用贪心算法等方法生成初步解。
  2. 进行大邻域搜索。将初始解分为多个子问题,然后对每个子问题进行局部搜索,得到一个局部最优解。
  3. 更新全局最优解。将每个子问题的局部最优解与当前全局最优解进行比较,如果局部最优解更优,则更新全局最优解。
  4. 根据终止条件判断是否结束。如果未满足终止条件,则回到步骤2继续搜索。
  5. 输出最优解。最终得到的全局最优解即为所求的最优解。

需要注意的是,在大邻域搜索过程中,需要根据问题特点和约束条件设计合适的局部搜索算法。例如,对于带容量的VRP问题,可以使用贪心算法、禁忌搜索等方法进行局部搜索。

⛄ 部分代码

function routes=parallel_savings_init(model)


D=model.d;

d=model.r;

C=model.c(1);

L=0;

minimize_K=false;




C_EPS=1e-1;


N=size(D,1);


ignore_negative_savings=true;


routes=cell(numel(2:N),1);

route_costs=cell(numel(routes),1);


for i=1:numel(routes)

   routes{i}=i+1;

end


if C

   route_demands=d(2:end);

else

   route_demands=zeros(N,1);

   

end


if L>0.1

   for i=1:numel(routes)

       

       route_costs{i}=D(1,i+1)+D(i+1,1);

   end

   

   

end

   

saving=clarke_wright_savings_function(model);


endnode_to_route=[1,1:N-1];




for p=1:size(saving,1)

%     best_saving=saving(p,1);

   i=saving(p,3);

   j=saving(p,4);

   

   if ignore_negative_savings

       cw_saving = D(i,1)+D(1,j)-D(i,j);

       if cw_saving<0

           break

       end

   end

   

   left_route = endnode_to_route(i);

   right_route = endnode_to_route(j);

   

   

   if isnan(left_route) || isnan(right_route) || left_route==right_route

       continue

   end

   

%     if isempty(left_route) || isempty(right_route) || left_route==right_route

%         continue

%     end

   

   if C

       merged_demand = route_demands(left_route)+route_demands(right_route);

       if merged_demand-C_EPS > C

           continue

       end

   end

   

   

%     if L>0.1

%         merged_cost = route_costs[left_route]-D[0,i]+\route_costs[right_route]-D[0,j]+\D[i,j]

%     end

   

   if C

       route_demands(left_route) = merged_demand;

   end

   

%     if L>0.1

%         route_costs(left_route) = merged_cost;

%     end


   if routes{left_route}(1)==i

       routes{left_route}=flip(routes{left_route});

   end


   if routes{right_route}(end)==j

       routes{right_route}=flip(routes{right_route});

   end


   if numel(routes{left_route})>1

       endnode_to_route( routes{left_route}(end) ) = nan;

   end

   

   if numel(routes{right_route})>1

       endnode_to_route( routes{right_route}(1) ) = nan;

   end

   

   endnode_to_route( routes{right_route}(end) ) = left_route;

   


   routes{left_route}=[routes{left_route},routes{right_route}];


   routes{right_route} = nan;

end

end

⛄ 运行结果

⛄ 参考文献

[1] 王仁民.改进变邻域搜索算法在动态车辆路径问题中的研究[D].广西师范学院[2023-06-10].DOI:CNKI:CDMD:2.1013.315439.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


目录
打赏
0
0
0
0
853
分享
相关文章
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
62 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
196 68
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
754 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
107 26
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等