【无人机三维路径规划】基于蚁群算法实现无人机三维路径规划含Matlab代码

简介: 【无人机三维路径规划】基于蚁群算法实现无人机三维路径规划含Matlab代码

⛄ 内容介绍

随着无人机可执行任务的多样化,航迹规划成为其顺利完成任务的基本前提。针对该问题,提出了基于群算法的无人机航迹规划方法。运用等效地形模拟方法,将作战区域中的敌方威胁、地形障碍等效为山峰,构建了无人机航迹规划的场景。以此为基础,采用抽象蚁群,对起始点和终点已知的无人机航迹进行规划,规划出的航迹安全地避开了威胁,长度较短,且平均耗时较小。仿真结果验证了该算法的有效性。

1.1 航迹规划问题的描述

无人机航迹规划问题的一般描述为:在给定的存在火力威胁和地形障碍等约束的作战环境中,为无人机从起始点到目标点求解一条可行航迹,该航迹不仅要避开障碍物,确保自身的安全,而且需要满足无人机自身的性能约束。此外,该航迹在某种性能指标的度量下需要达到最优,以保证所付出的代价最小。因此,从本质上讲,无人机航迹规划属于一种寻优问题。无人机航迹规划问题的约束条件可分为两类,一种是复杂作战环境约束,主要有:敌方火力威胁、地形障碍;另一种是无人机自身性能约束,主要有:最大水平转弯角、最大爬升/俯冲角、最小航迹段长度、最长飞行距离和最低飞行高度。该问题的目标函数为无人机的航迹长度达到最短。

1.2 航迹规划问题的模型构建

无人机在复杂作战环境中执行各种任务时,可能会面临敌方火力的威胁,如地空导弹、防空火炮等。目前雷达依然是对目标进行远距离探测、跟踪的主要设备,敌方的防空火力威胁几乎必须依靠雷达才能发挥其威力,故可将敌方的各种威胁简化为雷达威胁区域。无人机在作战区域中遇到的地形障碍,同样可以视为禁飞区域。威胁等效地形模拟方法,是将复杂环境中的威胁与障碍等效处理成山峰地形,已在多个文献中得到应用。它通过把敌方威胁处理成特殊的地形,其位置和作用范围叠加到数字地图上,威胁的作用就等同于抬高该作用范围的地形。经过这样处理后,无人机飞行区域内已知的地形障碍和敌方威胁融合成了综合的地形信息,而且把敌方威胁回避等效为地形回避进行处理,使航迹规划问题得到大大简化。根据该等效方法,本文对作战环境中的敌方威胁和地形障碍进行建模,可得威胁等效地形数学模型:

⛄ 部分代码

function plotFigure(startPos,goalPos,X,Y,Z, GlobalBest)


% 画起点和终点

scatter3(startPos(1), startPos(2), startPos(3),100,'bs','MarkerFaceColor','y')

hold on

scatter3(goalPos(1), goalPos(2), goalPos(3),100,'kp','MarkerFaceColor','y')


% 画山峰曲面

surf(X,Y,Z)      % 画曲面图

shading flat     % 各小曲面之间不要网格


% 画路径

path = GlobalBest.path;

pos = GlobalBest.pos;

scatter3(pos.x, pos.y, pos.z, 'go');

plot3(path(:,1), path(:,2),path(:,3), 'r','LineWidth',2);


hold off

grid on


⛄ 运行结果

⛄ 参考文献

[1] 张洛兵, 徐流沙, 吴梅. 基于改进人工蜂群算法的无人机实时航迹规划[J]. 飞行力学, 2015(1):6.

[2] 王庆海, 刘广瑞, 郭珂甫,等. 基于改进人工蜂群算法的无人机航迹规划研究[J]. 机床与液压, 2017, 45(21):5.

[3] 来佳音, 赵泳成. 基于改进蚁群算法的无人机三维路径规划研究[J]. 信息记录材料, 2020.

[4] 罗文平, 刘维勤, 王红旭,等. 基于人工蜂群算法和有限元强度计算的集装箱船剖面结构优化[J]. 中国舰船研究, 2023, 18(2):160-167, 217.

[5] 肖振宇, 杨福廷, 董航. 基于人工蜂群算法的多无人机三维编队重构方法:, CN109669475A[P]. 2019.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
19天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
154 80
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。