基于DNN网络的信道估计matlab仿真,仿真输出信道估计值的mse指标

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
简介: 基于DNN网络的信道估计matlab仿真,仿真输出信道估计值的mse指标

1.算法仿真效果
matlab2022a仿真结果如下:
31aace5ca5c9c452328b83c38c261641_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6373452003a0b4358e158bcfd89b2535_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2ddb62365167597b8428467525064ba9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
在信道变化迅速的系统中,通常依靠频域的导频子载波进行信道估计。导频子载波按照特定的规则插入到时频两维资源中。导频子载波处的信道响应可以通过最小二乘法(least-square,ls)和线性最小均方误差法(linearminimummeansquareerror,lmmse)进行估计,其他子载波处的信道响应则通过插值得到。基于判决反馈的盲信道估计方法将判决后的数据反馈至信道估计器进行去除调制信息操作,从而得到信道响应结果。基于相位的估计算法利用dqpsk调制信号幅度恒定相位为的整数倍的特性,利用接收信号相位在乘4、模2π、除以4的操作后,所有星座点都将变换到正实轴上(相位为0,幅度为1),这一操作相当于去除了dqpsk的调制信息,无需对信号进行判决。

    近几年,人工智能尤其是深度学习在无线通信物理层中也得到了广泛的应用。深度学习(Deep Learning, DL),由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其它相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
    在所用的结构中使用DNN的原因是,DNN是唯一可以在任何类型(有监督的和无监督的)任何地方(星座整形器,信道估计器和检测器)应用的机器学习算法。例如,即使支持向量机(它是有监督的二进制分类器),尽管其检测性能良好,但也不能应用于星座整形器或信道估计器等其他部分(因为这两个部分是无监督的。DNN是光学通信中使用最广泛的深度学习技术,并且是传统方法的适当替代方法。DNN的复杂度低,响应速度快。它可以建模复杂的多维非线性关系。由于这些优点,在FSO中应用DNN进行星座整形,信道估计和检测可以显着降低复杂性,成本,等待时间和处理,同时保持系统性能。

      深度神经网络的内部神经网络有3层,第一层输入,最后一层输出,其余中间都是隐藏层,层与层之间全连接。在局部的小模型来讲和感知机是一样的,都是线性关系+激活函数,即
AI 代码解读

Layer 1: Layer 2:

Z[1] = W[1]·X + b[1] Z[2] = W[2]·A[1] + b[2]
A[1] = σ(Z[1]) A[2] = σ(Z[2])

X其实就是A[0],所以不难看出:

Layer i:
Z[i] = W[i]·A[i-1] + b[i]
A[i] = σ(Z[i])

(注:σ是sigmoid函数)

因此不管我们神经网络有几层,都是将上面过程的重复
2439500922d21a7feaf01169df7bc3f8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.MATLAB核心程序
```for i = 1:length(SNRS);
i
L = 3;
SNR = SNRS(i);
P=[1+1i,1-1i,2-1i,1+2i]';

for i=1:20000
    hh     = randn(3,1)+1i*randn(3,1);
    yy     = comsystem(P,L,hh,SNR);

    h(:,i) = hh;
    y(:,i) = yy;
end
n         = size(y,2);
indim     = size(y,1);
outdim    = size(h,1);

inputdim  = indim*2;
outputdim = outdim*2;

realy     = real(y);
imagy     = imag(y);

yy        = zeros(inputdim,n);

yy(1:2:inputdim-1,:) = realy;
yy(2:2:inputdim,:)   = imagy;

realh     = real(h);
imagh     = imag(h);

hh        = zeros(outputdim,n);

hh(1:2:outputdim-1,:) = realh;
hh(2:2:outputdim,:)   = imagh;

%Normalization
din      = min(yy')';
Tdin     = max(yy')';
trainYY  = yy;

for i = 1:n
    tmp          = yy(:,i);
    tmp          = (tmp-din)./(Tdin-din);
    trainYY(:,i) = tmp;
end

dout   = min(hh')';
Tdout  = max(hh')';

trainHH = hh;
for i = 1:n
    tmp          = hh(:,i);
    tmp          = (tmp-dout)./(Tdout-dout);
    trainHH(:,i) = tmp;
end


pr      = zeros(inputdim,2);
pr(:,1) = 0;
pr(:,2) = 1;
hiden   = 18;



net = newff(pr,[hiden,outputdim],{'logsig','purelin'},'trainlm');
net.trainParam.lr=0.01;
net.trainParam.goal=1e-5;
net.trainParam.epochs=40;
net=train(net,trainYY,trainHH);

if SNR==1
   save dat\DNN_SNR1.mat net din Tdin dout Tdout
end
if SNR==2
   save dat\DNN_SNR2.mat net din Tdin dout Tdout
end
if SNR==3
   save dat\DNN_SNR3.mat net din Tdin dout Tdout
end
if SNR==4
   save dat\DNN_SNR4.mat net din Tdin dout Tdout
end
if SNR==5
   save dat\DNN_SNR5.mat net din Tdin dout Tdout
end
if SNR==6
   save dat\DNN_SNR6.mat net din Tdin dout Tdout
end
if SNR==7
   save dat\DNN_SNR7.mat net din Tdin dout Tdout
end
if SNR==8
   save dat\DNN_SNR8.mat net din Tdin dout Tdout
end
if SNR==9
   save dat\DNN_SNR9.mat net din Tdin dout Tdout
end
if SNR==10
   save dat\DNN_SNR10.mat net din Tdin dout Tdout
end

if SNR==11
   save dat\DNN_SNR11.mat net din Tdin dout Tdout
end
if SNR==12
   save dat\DNN_SNR12.mat net din Tdin dout Tdout
end
if SNR==13
   save dat\DNN_SNR13.mat net din Tdin dout Tdout
end
if SNR==14
   save dat\DNN_SNR14.mat net din Tdin dout Tdout
end
if SNR==15
   save dat\DNN_SNR15.mat net din Tdin dout Tdout
end
if SNR==16
   save dat\DNN_SNR16.mat net din Tdin dout Tdout
end
if SNR==17
   save dat\DNN_SNR17.mat net din Tdin dout Tdout
end
if SNR==18
   save dat\DNN_SNR18.mat net din Tdin dout Tdout
end
if SNR==19
   save dat\DNN_SNR19.mat net din Tdin dout Tdout
end
if SNR==20
   save dat\DNN_SNR20.mat net din Tdin dout Tdout
end
AI 代码解读

end
```

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
0
0
0
238
分享
相关文章
基于SC-FDE单载波频域均衡MQAM通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容主要介绍基于MATLAB的SC-FDE单载波频域均衡通信链路设计与实现,包括UW序列设计、QAM调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等关键环节。通过仿真(MATLAB 2022a),验证了系统的可行性和性能。核心程序展示了不同QAM调制方式(如256QAM)及同步算法的具体实现,并通过绘图展示帧同步、定时同步和频偏补偿效果。此研究为优化通信系统性能提供了理论与实践基础。
21 0
基于DVB-T的COFDM+16QAM+Viterbi编解码图传通信系统matlab仿真,包括载波定时同步,信道估计
本内容展示了基于DVB-T的COFDM+16QAM+Viterbi编解码通信链路的算法仿真与实现。通过Matlab2022a仿真,验证了系统性能(附无水印完整代码运行结果截图)。该系统结合COFDM、16QAM调制和Viterbi编解码技术,具备高效传输与抗多径衰落能力。核心程序涵盖加循环前缀、瑞利多径衰落信道模拟、符号同步、细定时估计等关键步骤,并实现了图像数据的二进制转换与RGB合并展示。理论部分详细解析了载波同步、定时同步及信道估计模块的功能与原理,为数字视频广播系统的开发提供了全面参考。
48 19
基于SC-FDE单载波频域均衡的MPSK通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容展示了基于MATLAB 2022a的SC-FDE单载波频域均衡通信链路仿真,包括UW序列设计、QPSK调制、帧同步、定时与载波同步、SNR估计及MMSE信道估计等关键环节。通过8张仿真结果图验证了系统性能。理论部分详述了单载波频域均衡技术原理,以及各模块的设计与实现步骤。核心程序代码涵盖调制方式选择(如QPSK)、UW序列生成、数据帧构建、信道模拟及同步补偿等操作,为高效数据传输提供了完整解决方案。
49 19
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。

热门文章

最新文章