m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

简介: m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

1.算法仿真效果
matlab2022a仿真结果如下:

75ae6cfbcde758ab104c94db55dc0bcf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
2662a2fde973ef92b0036844c3987587_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f05bb99ed027a3505ede1b921ad1994b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
dc94a04661dc9d20130ebc0a9d92832d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输"是一种无线通信系统,它利用正交频分复用(OFDM)和四相位偏移键控(QPSK)技术来传输图像数据,并借助深度神经网络(DNN)来进行信道估计,从而提高信号传输的可靠性和效率。

   OFDM是一种常用的多载波调制技术,它将高速数据流分为多个低速子载波,并使每个子载波之间正交,从而提高频谱利用率和抗干扰能力。QPSK是一种常见的调制方式,它将每两个比特映射为一个复数信号点,每个信号点对应四个相位(0°、90°、180°、270°)。无线图像传输系统由发送端和接收端组成。发送端将图像数据转换为比特流,然后采用QPSK调制和OFDM技术将比特流映射到不同的子载波上,生成OFDM符号序列。接收端接收OFDM符号序列,并利用DNN进行信道估计,根据估计得到的信道状态信息对接收信号进行解调和解调制,最终恢复出原始图像数据。

c08d2b0283a4c44e97cb2a1426ce1df0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   DNN是一种深度学习模型,用于从接收信号中学习信道特征。DNN的输入是接收信号的采样值,输出是对应的信道状态信息。训练DNN需要使用已知信道状态信息的样本,通过梯度下降等优化算法来调整DNN的参数,使其能够准确地估计信道状态信息。 

实现过程

图像编码:将图像数据转换为比特流。

QPSK调制:将比特流映射为QPSK符号。

OFDM调制:将QPSK符号映射到不同的OFDM子载波上,生成OFDM符号序列。

信道传输:通过无线信道传输OFDM符号序列,引入噪声和衰落。

接收和采样:接收端对信号进行采样,得到接收信号的采样值。

DNN信道估计:使用已知信道状态信息的样本训练DNN模型,得到信道估计模型。

信道估计:利用DNN模型对接收信号进行信道估计,得到信道状态信息。

解调和解码:根据信道状态信息对接收信号进行解调和解码,恢复出原始图像数据。

3.MATLAB核心程序

clear;
close all;
warning off;
addpath 'func\'
Ttrain  = load('T_train.mat'); 

Ptrain2 = [];
Ttrain2 = [];

for i = 1
    for j = 1:1
        Ptrain = load(['P_train',num2str(i),'_',num2str(j),'.mat']);   
        Ptrain2 = [Ptrain2;Ptrain.Ch_feature  ];
        Ttrain2 = [Ttrain2;Ttrain.Ch_feature  ];
    end
end

%输入层权值和偏移值
WI     = rand(size(Ttrain2))/1000;
BI     = rand(size(Ttrain2))/1000;
%定义4个隐含层
W1     = rand(size(Ttrain2));
BI1    = rand(size(Ttrain2));
W2     = rand(size(Ttrain2)/2);
BI2    = rand(size(Ttrain2)/2);
%输出层
WO     = rand(size(Ttrain2)/2);
BO     = rand(size(Ttrain2)/2);
%学习率
Lr     = 0.0005;
%迭代次数
Iter   = 2000;

for  it = 1:Iter
     it
     %训练
     tmps1  = Ptrain2.*WI+BI;
     tmps2  = tmps1.*W1+BI1;  
     %激活的
     tmps2_ = [];
     tmps2_ = func_ReLu(tmps2);

     tmps3  = tmps2_(1:2:end,1:2:end).*W2+BI2; 
     tmps4  = tmps3.*WO+BO;             
     error  = (Ttrain2(1:2:end,1:2:end)-tmps4);

     %更新权值
     W1     = W1 + Lr*repmat(error,2,2);
     BI1    = BI1+ Lr*repmat(error,2,2);
     W2     = W2 + Lr*error;
     BI2    = BI2+ Lr*error;
     %输出层
     WO     = WO + Lr*error;
     BO     = BO + Lr*error;
     errors(it) = mean2(abs(error));
end

figure;
plot(errors,'b','linewidth',2);
grid on
xlabel('训练次数');
ylabel('训练误差');

save dl0.mat errors WI BI W1 BI1 W2 BI2 WO BO
相关文章
|
1月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
3月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
132 18
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
155 31
|
4月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
8月前
|
机器学习/深度学习 数据采集 算法
基于深度学习网络的USB摄像头实时视频采集与火焰检测matlab仿真
本项目使用MATLAB2022a实现基于YOLOv2的火焰检测系统。通过USB摄像头捕捉火焰视频,系统实时识别并标出火焰位置。核心流程包括:视频采集、火焰检测及数据预处理(图像标准化与增强)。YOLOv2模型经特定火焰数据集训练,能快速准确地识别火焰。系统含详细中文注释与操作指南,助力快速上手。
|
8月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
139 4
|
9月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
22天前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
276 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
3月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
166 22

热门文章

最新文章

下一篇
oss创建bucket