《云原生一站式数据库技术与实践》——二、云原生数据仓库AnalyticDB MySQL高性能存储引擎(2)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 《云原生一站式数据库技术与实践》——二、云原生数据仓库AnalyticDB MySQL高性能存储引擎(2)

《云原生一站式数据库技术与实践》——二、云原生数据仓库AnalyticDB MySQL高性能存储引擎(1) https://developer.aliyun.com/article/1231659?groupCode=aliyundb




最上层为JDBC 协议的接入层。一个insert into 语句由JDBC 接入后向下发送,首先会转为Raft command,通过Raft层发送给存储节点。计算层的主要功能是外表的高并发读,读取到的数据会被批量写入到存储节点。



存储节点类似于分库分表的架构,任意表会被均匀地拆到下面的若干个Shard之上。每个Shard 包含两个数据副本和一个日志副本,它并不是完全标准的Raft,而是2+1 的模式。两个数据副本负责承接写入和查询,日志副本仅参与投票,保证整体高可用的同时也节省了一份数据存储的开销以及一份用户写入的开销。



Shard 内部最上层为query merger,相当于存储层的查询接入,负责接入下推到存储的计算算子。存储引擎内部的数据分为实时数据和历史数据。



实时数据面向写进行优化,具备相对良好的写入能力,它只有数据文件和粗糙索引,不具备复杂精确索引。除此之外,还有版本管理器和delete bit-set,便于修改。实时数据通过build 转化为历史数据。历史数据可以认为是经过读优化的数据,具备良好的读性能。



在历史数据中,除了数据文件以外,还有多种类型的索引,包括倒排、BKD、位图等多种类型的索引。构建过程中还进行了数据的冷热分层。



准实时数仓的写入需求一般为高吞吐(日志数据)、低延迟(业务数据),还需要兼顾写入性能以及查询性能。



前端节点为无状态,具备良好的可拓展性,可以任意横向扩展,进行高并发的写入。Raft 在相对成规模的生产集群中,通常有数千个Raft group,互相之间完全独立,相当于数千个Raft Group 可同时进行并发写入。



一条insert 语句从前端节点转成Raft command,进入Raft 状态机进行消费之后,会转发给同步层的Dispatch queue。每个Raft group对应一个shard 或分库。若用户创建了N 个表,每个分库中有N 个分表。即使Raft 的并发度足够高,用户分表数也可能更多,因此需要在Dispatch queue 中进行进一步拆分,使得写并发更高。除此之外,Dispatch queue 还负责内存管理和反压工作,写入之后会进行内存控制和反压,保证不会被写挂,防止影响线上查询。



消费到存储层之后会进行group commit 操作,在table engine 前进行攒批。Append only的写模式能够保证非常良好的写入性能。



ADB 内部实现了Snapshot 功能,每隔一段时间会打快照,使产品具备time travel查询能力的基础,但time travel 的功能并目前没未对用户放开。同时,我们会定期将snapshot 进行刷盘,落盘之后做checkpoint。checkpoint 可以与raft log 进行配合,重启之后可从某个checkpoint 位点恢复,再消费少量的增量log,做到快速恢复。Snapshot 还会作为build 只读数据源进行异步构建,构建索引和分区。


image.png


上图左侧为Replace的原子性实现



《云原生一站式数据库技术与实践》——二、云原生数据仓库AnalyticDB MySQL高性能存储引擎(3) https://developer.aliyun.com/article/1231657?groupCode=aliyundb

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
11天前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
5月前
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
64 2
|
16天前
|
存储 关系型数据库 MySQL
MySQL存储引擎详述:InnoDB为何胜出?
MySQL 是最流行的开源关系型数据库之一,其存储引擎设计是其高效灵活的关键。InnoDB 作为默认存储引擎,支持事务、行级锁和外键约束,适用于高并发读写和数据完整性要求高的场景;而 MyISAM 不支持事务,适合读密集且对事务要求不高的应用。根据不同需求选择合适的存储引擎至关重要,官方推荐大多数场景使用 InnoDB。
62 7
|
3月前
|
存储 SQL 关系型数据库
MySQL存储引擎
本文介绍了数据库优化的多个方面,包括选择合适的存储引擎、字段定义原则、避免使用外键和触发器、大文件存储策略、表拆分及字段冗余处理等。强调了从业务层面进行优化的重要性,如通过活动设计减少外部接口调用,以及在高并发场景下的流量控制与预处理措施。文章还提供了具体的SQL优化技巧和表结构优化建议,旨在提高数据库性能和可维护性。
MySQL存储引擎
|
2月前
|
存储 缓存 关系型数据库
【赵渝强老师】MySQL的MyISAM存储引擎
在MySQL5.1版本之前,默认存储引擎为MyISAM。MyISAM管理非事务表,提供高速存储和检索,支持全文搜索。其特点包括不支持事务、表级锁定、读写互阻、仅缓存索引等。适用于读多、写少且对一致性要求不高的场景。示例代码展示了MyISAM存储引擎的基本操作。
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL的InnoDB存储引擎
InnoDB是MySQL的默认存储引擎,广泛应用于互联网公司。它支持事务、行级锁、外键和高效处理大量数据。InnoDB的主要特性包括解决不可重复读和幻读问题、高并发度、B+树索引等。其存储结构分为逻辑和物理两部分,内存结构类似Oracle的SGA和PGA,线程结构包括主线程、I/O线程和其他辅助线程。
【赵渝强老师】MySQL的InnoDB存储引擎
|
2月前
|
存储 关系型数据库 MySQL
【赵渝强老师】MySQL的Memory存储引擎
MySQL 的存储引擎层负责数据的存储和提取,支持多种存储引擎,如 InnoDB、MyISAM 和 Memory。InnoDB 是最常用的存储引擎,从 MySQL 5.5.5 版本起成为默认引擎。Memory 存储引擎的数据仅存在于内存中,重启后数据会丢失。示例中创建了使用 Memory 引擎的 test3 表,并展示了数据在重启后消失的过程。
|
3月前
|
存储 SQL 缓存
MySQL存储引擎如何完成一条更新语句的执行!
MySQL存储引擎如何完成一条更新语句的执行!
MySQL存储引擎如何完成一条更新语句的执行!
|
4月前
|
存储 缓存 关系型数据库
MySQL高级篇——存储引擎和索引
MyISAM:不支持外键和事务,表锁不适合高并发,只缓存索引,内存要求低,查询快MyISAM提供了大量的特性,包括全文索引、压缩、空间函数(GIS)等,但MyISAM不支持事务、行级锁、外键,有一个毫无疑问的缺陷就是崩溃后无法安全恢复。5.5之前默认的存储引擎优势是访问的速度快,对事务完整性没有要求或者以SELECT、INSERT为主的应用针对数据统计有额外的常数存储。故而 count(*) 的查询效率很高表名.frm 存储表结构;表名.MYD 存储数据 (MYData);
MySQL高级篇——存储引擎和索引
|
5月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
1463 2

相关产品

  • 云原生数据仓库AnalyticDB MySQL版