白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索

简介: 白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索

20190806092132811.jpg

概述

继续跟中华石杉老师学习ES,第17篇

课程地址: https://www.roncoo.com/view/55


官网


https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html


20190728180437764.png

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html



2019072818053341.png

20190728180544132.png



近似匹配


假设content字段中有2个语句

java is my favourite programming language, and I also think spark is a very good big data system.
java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.

使用match query , 搜索java spark ,DSL 大致如下

{
  "match": {
    "content": "java spark"
  }
}


content 被拆分为两个单词 java 和 spark去匹配,所以如上两个doc都能被查询出来。


match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是离的很近. 包含java或包含spark,或包含java和spark的doc,都会被查询出来。我们其实并不知道哪个doc,java和spark距离的比较近。


如果我们希望搜索java spark,中间不能插入任何其他的字符, 这个时候match就无能为力了 。


再比如 , 如果我们要尽量让java和spark离的很近的document优先返回,要给它一个更高的relevance score,这就涉及到了proximity match,近似匹配.


例子


假设要实现两个需求:


java spark,就靠在一起,中间不能插入任何其他字符,就要搜索出来这种doc

java spark,但是要求,java和spark两个单词靠的越近,doc的分数越高,排名越靠前

要实现上述两个需求,用match做全文检索,是搞不定的,必须得用proximity match,近似匹配


phrase match:短语匹配

proximity match:近似匹配


这里我们要学习的是phrase match,就是仅仅搜索出java和spark靠在一起的那些doc,比如有个doc,是java use’d spark,不行。必须是比如java spark are very good friends,是可以搜索出来的。


match phrase query,就是要去将多个term作为一个短语,一起去搜索,只有包含这个短语的doc才会作为结果返回。


不像是match query,java spark,java的doc也会返回,spark的doc也会返回。


match query

为了做比对,我们先看下match query的查询结果

GET /forum/article/_search
{
  "query": {
    "match": {
      "content": "java spark"
    }
  }
}


返回结果

{
  "took": 40,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1.8166281,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 1.8166281,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2019-05-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 0.7721133,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course",
          "author_first_name": "Smith",
          "author_last_name": "Williams",
          "new_author_last_name": "Williams",
          "new_author_first_name": "Smith"
        }
      }
    ]
  }
}


可以看到单单包含java的doc也返回了,不是我们想要的结果 。


match phrase query

为了演示match phrase query的功能,我们先调整一下测试数据

POST /forum/article/5/_update
{
  "doc": {
    "content":"spark is best big data solution based on scala ,an programming language similar to java spark"
  }
}

将id=5的doc的content设置为恰巧包含java spark这个短语 。

GET /forum/article/_search
{
  "query": {
    "match_phrase": {
      "content": "java spark"
    }
  }
}


返回结果

{
  "took": 47,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1.4302213,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 1.4302213,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2019-05-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny"
        }
      }
    ]
  }
}


从结果中可以看到只有包含java spark这个短语的doc才返回,只包含java的doc不会返回


term position


分词后,每个单词就是一个term

分词后 , es还记录了 每个field的位置。

举个例子 两个doc 如下:

hello world, java spark doc1

hi, spark java doc2

建立倒排索引后

image.png

可以通过如下API来看下

GET _analyze
{
  "text": "hello world, java spark",
  "analyzer": "standard"
}


返回:

{
  "tokens": [
    {
      "token": "hello",
      "start_offset": 0,
      "end_offset": 5,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "world",
      "start_offset": 6,
      "end_offset": 11,
      "type": "<ALPHANUM>",
      "position": 1
    },
    {
      "token": "java",
      "start_offset": 13,
      "end_offset": 17,
      "type": "<ALPHANUM>",
      "position": 2
    },
    {
      "token": "spark",
      "start_offset": 18,
      "end_offset": 23,
      "type": "<ALPHANUM>",
      "position": 3
    }
  ]
}


通过position 可以看到位置信息 。


match_phrase的基本原理

理解下索引中的position,match_phrase

两个doc 如下

hello world, java spark   doc1
hi, spark java        doc2


image.png


java spark , 采用match phrase来查询

  1. 首先 java spark 被拆成 java和spark ,分别取索引中查找
java  出现在    doc1(2)    doc2(2)
spark 出现在  doc1(3)    doc2(1)


要找到每个term都在的一个共有的那些doc,就是要求一个doc,必须包含每个term,才能拿出来继续计算


doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好满足条件


doc1符合条件


doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不满足,那么doc2不匹配 .

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
相关文章
|
4月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
4月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 9.1.5 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.1.5 (macOS, Linux, Windows) - 分布式搜索和分析引擎
394 0
|
5月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
417 0
|
9月前
|
存储 安全 Linux
Elasticsearch Enterprise 9.0 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.0 (macOS, Linux, Windows) - 分布式搜索和分析引擎
411 0
|
9月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 8.18 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 8.18 (macOS, Linux, Windows) - 分布式搜索和分析引擎
359 0
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
781 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
417 3
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
475 1
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
979 5
|
10月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1883 64