手把手教你使用LabVIEW TensorRT实现图像分类实战上(含源码)

简介: 手把手教你使用LabVIEW TensorRT实现图像分类实战上

前言

各位朋友,今天我们一起来探究一下如何基于LabVIEW使用TensorRT实现图像分类需要做的一些准备工作,本文所用到的工具包的安装与下载方法可参考博文:https://blog.csdn.net/virobotics/article/details/129304465

一、TensorRT简介

TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟、高吞吐率的部署推理。TensorRT可用于对超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。主要用来针对 NVIDIA GPU进行高性能推理(Inference)加速。

image.png

TensorRT与其他推理引擎速度对比:

image.png

注:测试电脑cpu为i7-11800H,Intel集显为i7-11650G7,独显为笔记本RTX 3070(包括预处理和后处理)

二、TensorRT工具包常用函数介绍

TensorRT工具包所在位置:

image.png

TrtSession:推理函数系列,可直接推理engine(trt)模型和onnx模型

TensorRT工具包常用函数介绍:

image.png

image.png

三、模型获取及转换为onnx

  • 安装pytorch和torchvision
  • 获取torchvision中的模型:mobile(我们获取预训练好的模型):
    original_model = models.mobilenet_v2(pretrained=True)
    
  • 转onnx
def get_pytorch_onnx_model(original_model):
    # define the directory for further converted model save
    onnx_model_path = dirname
    # define the name of further converted model
    onnx_model_name = "mobilenet.onnx"

    # create directory for further converted model
    os.makedirs(onnx_model_path, exist_ok=True)

    # get full path to the converted model
    full_model_path = os.path.join(onnx_model_path, onnx_model_name)

    # generate model input
    generated_input = Variable(
        torch.randn(1, 3, 224, 224)
    )

    # model export into ONNX format
    torch.onnx.export(
        original_model,
        generated_input,
        full_model_path,
        verbose=True,
        input_names=["input"],
        output_names=["output"],
        opset_version=11
    )

    return full_model_path

完整获取及模型转换python代码如下:

import os
import torch
import torch.onnx
from torch.autograd import Variable
from torchvision import models

dirname, filename = os.path.split(os.path.abspath(__file__))
print(dirname)

def get_pytorch_onnx_model(original_model):
    # define the directory for further converted model save
    onnx_model_path = dirname
    # define the name of further converted model
    onnx_model_name = "mobilenet.onnx"

    # create directory for further converted model
    os.makedirs(onnx_model_path, exist_ok=True)

    # get full path to the converted model
    full_model_path = os.path.join(onnx_model_path, onnx_model_name)

    # generate model input
    generated_input = Variable(
        torch.randn(1, 3, 224, 224)
    )

    # model export into ONNX format
    torch.onnx.export(
        original_model,
        generated_input,
        full_model_path,
        verbose=True,
        input_names=["input"],
        output_names=["output"],
        opset_version=11
    )

    return full_model_path


def main():
    # initialize PyTorch MobileNetV2
    original_model = models.mobilenet_v2(pretrained=True)

    # get the path to the converted into ONNX PyTorch model
    full_model_path = get_pytorch_onnx_model(original_model)
    print("PyTorch MobileNet model was successfully converted: ", full_model_path)


if __name__ == "__main__":
    main()
注:该模型所用数据集为:ImageNet数据集

附加说明

操作系统:Windows10
python:3.6及以上
LabVIEW:2018及以上 64位版本
视觉工具包:techforce_lib_opencv_cpu-1.0.0.98.vip
LabVIEW TensorRT工具包:virobotics_lib_tensorrt-1.0.0.22.vip

总结

以上就是今天要给大家分享的内容。下一篇我们将给大家讲解图像分类使用tensorRT工具包在LabVIEW中的部署。如果有问题可以在评论区里讨论,如您想要探讨更多关于LabVIEW与人工智能技术,欢迎加入我们的技术交流群:705637299。进群请备注:LabVIEW机器视觉

**如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏

目录
相关文章
|
机器学习/深度学习 并行计算 计算机视觉
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
7511 1
|
XML 存储 PyTorch
基于Pytorch的从零开始的目标检测 | 附源码
基于Pytorch的从零开始的目标检测 | 附源码
|
机器学习/深度学习 人工智能 计算机视觉
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
617 0
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
|
缓存 PyTorch API
手把手教你使用LabVIEW TensorRT实现图像分类实战下(含源码)
手把手教你使用LabVIEW TensorRT实现图像分类实战下
231 0
手把手教你使用LabVIEW TensorRT实现图像分类实战下(含源码)
|
机器学习/深度学习 计算机视觉 Python
|
人工智能 并行计算 计算机视觉
YOLOv6在LabVIEW中的推理部署(含源码)
YOLOv6在LabVIEW中的推理部署
281 0
|
机器学习/深度学习 数据可视化 PyTorch
手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)
今天和大家一起来看一下在LabVIEW中如何使用OpenCV DNN模块实现手写数字识别
225 0
|
并行计算 API 计算机视觉
【CUDA学习笔记】第十篇:基本计算机视觉操作【下】(附实践源码下载)(二)
【CUDA学习笔记】第十篇:基本计算机视觉操作【下】(附实践源码下载)(二)
132 0
|
并行计算 算法 计算机视觉
【CUDA学习笔记】第十篇:基本计算机视觉操作【下】(附实践源码下载)(一)
【CUDA学习笔记】第十篇:基本计算机视觉操作【下】(附实践源码下载)(一)
147 0
|
存储 并行计算 计算机视觉
【CUDA学习笔记】第九篇:基本计算机视觉操作【上】(附实践源码下载)(二)
【CUDA学习笔记】第九篇:基本计算机视觉操作【上】(附实践源码下载)(二)
125 0