从零开始学Pytorch(十七)之目标检测基础(二)

简介: 从零开始学Pytorch(十七)之目标检测基础

051bd49e318f5b2de918ac4974d84eff.png

compute_jaccard(anchors, ground_truth[:, 1:]) # 验证一下写的compute_jaccard函数

输出:tensor([[0.0536, 0.0000],

[0.1417, 0.0000],

[0.0000, 0.5657],

[0.0000, 0.2059],

[0.0000, 0.7459]])

下面实现MultiBoxTarget函数来为锚框标注类别和偏移量。该函数将背景类别设为0,并令从零开始的目标类别的整数索引自加1(1为狗,2为猫)。

# 以下函数已保存在d2lzh_pytorch包中方便以后使用
def assign_anchor(bb, anchor, jaccard_threshold=0.5):
    """
    # 按照「9.4.1. 生成多个锚框」图9.3所讲为每个anchor分配真实的bb, anchor表示成归一化(xmin, ymin, xmax, ymax).
    https://zh.d2l.ai/chapter_computer-vision/anchor.html
    Args:
        bb: 真实边界框(bounding box), shape:(nb, 4)
        anchor: 待分配的anchor, shape:(na, 4)
        jaccard_threshold: 预先设定的阈值
    Returns:
        assigned_idx: shape: (na, ), 每个anchor分配的真实bb对应的索引, 若未分配任何bb则为-1
    """
    na = anchor.shape[0]
    nb = bb.shape[0]
    jaccard = compute_jaccard(anchor, bb).detach().cpu().numpy() # shape: (na, nb)
    assigned_idx = np.ones(na) * -1  # 存放标签初始全为-1
    # 先为每个bb分配一个anchor(不要求满足jaccard_threshold)
    jaccard_cp = jaccard.copy()
    for j in range(nb):
        i = np.argmax(jaccard_cp[:, j])
        assigned_idx[i] = j
        jaccard_cp[i, :] = float("-inf") # 赋值为负无穷, 相当于去掉这一行
    # 处理还未被分配的anchor, 要求满足jaccard_threshold
    for i in range(na):
        if assigned_idx[i] == -1:
            j = np.argmax(jaccard[i, :])
            if jaccard[i, j] >= jaccard_threshold:
                assigned_idx[i] = j
    return torch.tensor(assigned_idx, dtype=torch.long)
def xy_to_cxcy(xy):
    """
    将(x_min, y_min, x_max, y_max)形式的anchor转换成(center_x, center_y, w, h)形式的.
    https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/blob/master/utils.py
    Args:
        xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    Returns:
        bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2,  # c_x, c_y
                      xy[:, 2:] - xy[:, :2]], 1)  # w, h
def MultiBoxTarget(anchor, label):
    """
    # 按照「9.4.1. 生成多个锚框」所讲的实现, anchor表示成归一化(xmin, ymin, xmax, ymax).
    https://zh.d2l.ai/chapter_computer-vision/anchor.html
    Args:
        anchor: torch tensor, 输入的锚框, 一般是通过MultiBoxPrior生成, shape:(1,锚框总数,4)
        label: 真实标签, shape为(bn, 每张图片最多的真实锚框数, 5)
               第二维中,如果给定图片没有这么多锚框, 可以先用-1填充空白, 最后一维中的元素为[类别标签, 四个坐标值]
    Returns:
        列表, [bbox_offset, bbox_mask, cls_labels]
        bbox_offset: 每个锚框的标注偏移量,形状为(bn,锚框总数*4)
        bbox_mask: 形状同bbox_offset, 每个锚框的掩码, 一一对应上面的偏移量, 负类锚框(背景)对应的掩码均为0, 正类锚框的掩码均为1
        cls_labels: 每个锚框的标注类别, 其中0表示为背景, 形状为(bn,锚框总数)
    """
    assert len(anchor.shape) == 3 and len(label.shape) == 3
    bn = label.shape[0]
    def MultiBoxTarget_one(anc, lab, eps=1e-6):
        """
        MultiBoxTarget函数的辅助函数, 处理batch中的一个
        Args:
            anc: shape of (锚框总数, 4)
            lab: shape of (真实锚框数, 5), 5代表[类别标签, 四个坐标值]
            eps: 一个极小值, 防止log0
        Returns:
            offset: (锚框总数*4, )
            bbox_mask: (锚框总数*4, ), 0代表背景, 1代表非背景
            cls_labels: (锚框总数, 4), 0代表背景
        """
        an = anc.shape[0]
        # 变量的意义
        assigned_idx = assign_anchor(lab[:, 1:], anc) # (锚框总数, )
        print("a: ",  assigned_idx.shape)
        print(assigned_idx)
        bbox_mask = ((assigned_idx >= 0).float().unsqueeze(-1)).repeat(1, 4) # (锚框总数, 4)
        print("b: " , bbox_mask.shape)
        print(bbox_mask)
        cls_labels = torch.zeros(an, dtype=torch.long) # 0表示背景
        assigned_bb = torch.zeros((an, 4), dtype=torch.float32) # 所有anchor对应的bb坐标
        for i in range(an):
            bb_idx = assigned_idx[i]
            if bb_idx >= 0: # 即非背景
                cls_labels[i] = lab[bb_idx, 0].long().item() + 1 # 注意要加一
                assigned_bb[i, :] = lab[bb_idx, 1:]
        # 如何计算偏移量
        center_anc = xy_to_cxcy(anc) # (center_x, center_y, w, h)
        center_assigned_bb = xy_to_cxcy(assigned_bb)
        offset_xy = 10.0 * (center_assigned_bb[:, :2] - center_anc[:, :2]) / center_anc[:, 2:]
        offset_wh = 5.0 * torch.log(eps + center_assigned_bb[:, 2:] / center_anc[:, 2:])
        offset = torch.cat([offset_xy, offset_wh], dim = 1) * bbox_mask # (锚框总数, 4)
        return offset.view(-1), bbox_mask.view(-1), cls_labels
    # 组合输出
    batch_offset = []
    batch_mask = []
    batch_cls_labels = []
    for b in range(bn):
        offset, bbox_mask, cls_labels = MultiBoxTarget_one(anchor[0, :, :], label[b, :, :])
        batch_offset.append(offset)
        batch_mask.append(bbox_mask)
        batch_cls_labels.append(cls_labels)
    bbox_offset = torch.stack(batch_offset)
    bbox_mask = torch.stack(batch_mask)
    cls_labels = torch.stack(batch_cls_labels)
    return [bbox_offset, bbox_mask, cls_labels]

我们通过unsqueeze函数为锚框和真实边界框添加样本维。

labels = MultiBoxTarget(anchors.unsqueeze(dim=0),
                        ground_truth.unsqueeze(dim=0))

输出:a:  torch.Size([5])

tensor([-1,  0,  1, -1,  1])

b:  torch.Size([5, 4])

tensor([[0., 0., 0., 0.],

[1., 1., 1., 1.],

[1., 1., 1., 1.],

[0., 0., 0., 0.],

[1., 1., 1., 1.]])

返回的结果里有3项,均为Tensor。第三项表示为锚框标注的类别。

labels[2]

输出:tensor([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 1.]])

返回的第一项是为每个锚框标注的四个偏移量,其中负类锚框的偏移量标注为0。

labels[0]

输出:tensor([[-0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00,  1.4000e+00,

1.0000e+01,  2.5940e+00,  7.1754e+00, -1.2000e+00,  2.6882e-01,

1.6824e+00, -1.5655e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00,

-0.0000e+00, -5.7143e-01, -1.0000e+00,  4.1723e-06,  6.2582e-01]])

输出预测边界框

在模型预测阶段,我们先为图像生成多个锚框,并为这些锚框一一预测类别和偏移量。随后,我们根据锚框及其预测偏移量得到预测边界框。当锚框数量较多时,同一个目标上可能会输出较多相似的预测边界框。为了使结果更加简洁,我们可以移除相似的预测边界框。常用的方法叫作非极大值抑制(non-maximum suppression,NMS)。

image.png

anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
                        [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0.0] * (4 * len(anchors)))
cls_probs = torch.tensor([[0., 0., 0., 0.,],  # 背景的预测概率
                          [0.9, 0.8, 0.7, 0.1],  # 狗的预测概率
                          [0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率

在图像上打印预测边界框和它们的置信度。

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,
            ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

ab8c1ad5aeca64084c2f49904593b394.png

下面我们实现MultiBoxDetection函数来执行非极大值抑制。

# 以下函数已保存在d2lzh_pytorch包中方便以后使用
from collections import namedtuple
Pred_BB_Info = namedtuple("Pred_BB_Info", ["index", "class_id", "confidence", "xyxy"])
def non_max_suppression(bb_info_list, nms_threshold = 0.5):
    """
    非极大抑制处理预测的边界框
    Args:
        bb_info_list: Pred_BB_Info的列表, 包含预测类别、置信度等信息
        nms_threshold: 阈值
    Returns:
        output: Pred_BB_Info的列表, 只保留过滤后的边界框信息
    """
    output = []
    # 先根据置信度从高到低排序
    sorted_bb_info_list = sorted(bb_info_list, key = lambda x: x.confidence, reverse=True)
    # 循环遍历删除冗余输出
    while len(sorted_bb_info_list) != 0:
        best = sorted_bb_info_list.pop(0)
        output.append(best)
        if len(sorted_bb_info_list) == 0:
            break
        bb_xyxy = []
        for bb in sorted_bb_info_list:
            bb_xyxy.append(bb.xyxy)
        iou = compute_jaccard(torch.tensor([best.xyxy]),
                              torch.tensor(bb_xyxy))[0] # shape: (len(sorted_bb_info_list), )
        n = len(sorted_bb_info_list)
        sorted_bb_info_list = [sorted_bb_info_list[i] for i in range(n) if iou[i] <= nms_threshold]
    return output
def MultiBoxDetection(cls_prob, loc_pred, anchor, nms_threshold = 0.5):
    """
    # 按照「9.4.1. 生成多个锚框」所讲的实现, anchor表示成归一化(xmin, ymin, xmax, ymax).
    https://zh.d2l.ai/chapter_computer-vision/anchor.html
    Args:
        cls_prob: 经过softmax后得到的各个锚框的预测概率, shape:(bn, 预测总类别数+1, 锚框个数)
        loc_pred: 预测的各个锚框的偏移量, shape:(bn, 锚框个数*4)
        anchor: MultiBoxPrior输出的默认锚框, shape: (1, 锚框个数, 4)
        nms_threshold: 非极大抑制中的阈值
    Returns:
        所有锚框的信息, shape: (bn, 锚框个数, 6)
        每个锚框信息由[class_id, confidence, xmin, ymin, xmax, ymax]表示
        class_id=-1 表示背景或在非极大值抑制中被移除了
    """
    assert len(cls_prob.shape) == 3 and len(loc_pred.shape) == 2 and len(anchor.shape) == 3
    bn = cls_prob.shape[0]
    def MultiBoxDetection_one(c_p, l_p, anc, nms_threshold = 0.5):
        """
        MultiBoxDetection的辅助函数, 处理batch中的一个
        Args:
            c_p: (预测总类别数+1, 锚框个数)
            l_p: (锚框个数*4, )
            anc: (锚框个数, 4)
            nms_threshold: 非极大抑制中的阈值
        Return:
            output: (锚框个数, 6)
        """
        pred_bb_num = c_p.shape[1]
        anc = (anc + l_p.view(pred_bb_num, 4)).detach().cpu().numpy() # 加上偏移量
        confidence, class_id = torch.max(c_p, 0)
        confidence = confidence.detach().cpu().numpy()
        class_id = class_id.detach().cpu().numpy()
        pred_bb_info = [Pred_BB_Info(
                            index = i,
                            class_id = class_id[i] - 1, # 正类label从0开始
                            confidence = confidence[i],
                            xyxy=[*anc[i]]) # xyxy是个列表
                        for i in range(pred_bb_num)]
        # 正类的index
        obj_bb_idx = [bb.index for bb in non_max_suppression(pred_bb_info, nms_threshold)]
        output = []
        for bb in pred_bb_info:
            output.append([
                (bb.class_id if bb.index in obj_bb_idx else -1.0),
                bb.confidence,
                *bb.xyxy
            ])
        return torch.tensor(output) # shape: (锚框个数, 6)
    batch_output = []
    for b in range(bn):
        batch_output.append(MultiBoxDetection_one(cls_prob[b], loc_pred[b], anchor[0], nms_threshold))
    return torch.stack(batch_output)

然后我们运行MultiBoxDetection函数并设阈值为0.5。这里为输入都增加了样本维。我们看到,返回的结果的形状为(批量大小, 锚框个数, 6)。其中每一行的6个元素代表同一个预测边界框的输出信息。第一个元素是索引从0开始计数的预测类别(0为狗,1为猫),其中-1表示背景或在非极大值抑制中被移除。第二个元素是预测边界框的置信度。剩余的4个元素分别是预测边界框左上角的和轴坐标以及右下角的和轴坐标(值域在0到1之间)。

output = MultiBoxDetection(
    cls_probs.unsqueeze(dim=0), offset_preds.unsqueeze(dim=0),
    anchors.unsqueeze(dim=0), nms_threshold=0.5)
output

6e8e76a486b1d7053f41626367118509.png

fig = d2l.plt.imshow(img)
for i in output[0].detach().cpu().numpy():
    if i[0] == -1:
        continue
    label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
    show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

fc8dfc920aab568eb3545151052fbf08.jpg

实践中,我们可以在执行非极大值抑制前将置信度较低的预测边界框移除,从而减小非极大值抑制的计算量。我们还可以筛选非极大值抑制的输出,例如,只保留其中置信度较高的结果作为最终输出。

多尺度目标检测


在9.4节(锚框)中,我们在实验中以输入图像的每个像素为中心生成多个锚框。这些锚框是对输入图像不同区域的采样。然而,如果以图像每个像素为中心都生成锚框,很容易生成过多锚框而造成计算量过大。举个例子,假设输入图像的高和宽分别为561像素和728像素,如果以每个像素为中心生成5个不同形状的锚框,那么一张图像上则需要标注并预测200多万个锚框

image.png

d2l.set_figsize()
def display_anchors(fmap_w, fmap_h, s):
    # 前两维的取值不影响输出结果(原书这里是(1, 10, fmap_w, fmap_h), 我认为错了)
    fmap = torch.zeros((1, 10, fmap_h, fmap_w), dtype=torch.float32)
    # 平移所有锚框使均匀分布在图片上
    offset_x, offset_y = 1.0/fmap_w, 1.0/fmap_h
    anchors = d2l.MultiBoxPrior(fmap, sizes=s, ratios=[1, 2, 0.5]) + \
        torch.tensor([offset_x/2, offset_y/2, offset_x/2, offset_y/2])
    bbox_scale = torch.tensor([[w, h, w, h]], dtype=torch.float32)
    d2l.show_bboxes(d2l.plt.imshow(img).axes,
                    anchors[0] * bbox_scale)
display_anchors(fmap_w=4, fmap_h=2, s=[0.15])

3f8d596008aa4427482d5ae45f03437e.png

display_anchors(fmap_w=2, fmap_h=1, s=[0.4])

cadf82fc7edade8548ec9f6d0539e55a.png

display_anchors(fmap_w=1, fmap_h=1, s=[0.8])

690fa5b07746d8424e18d1f0e2a4e486.jpg

参考文献


[1]《动手深度学习》李沐

[2]伯禹教育课程jupyternotebook

相关文章
|
XML 存储 PyTorch
基于Pytorch的从零开始的目标检测 | 附源码
基于Pytorch的从零开始的目标检测 | 附源码
|
机器学习/深度学习 并行计算 算法
基于 PyTorch 的目标检测(YOLO实现)
基于 PyTorch 的目标检测(YOLO实现)
|
PyTorch 算法框架/工具 计算机视觉
目标检测模型NanoDet(超轻量,速度很快)介绍和PyTorch版本实践
YOLO、SSD、Fast R-CNN等模型在目标检测方面速度较快和精度较高,但是这些模型比较大,不太适合移植到移动端或嵌入式设备;轻量级模型 NanoDet-m,对单阶段检测模型三大模块(Head、Neck、Backbone)进行轻量化,目标加检测速度很快;模型文件大小仅几兆(小于4M)。
396 0
|
机器学习/深度学习 PyTorch 算法框架/工具
基于 PyTorch 和 YOLO 的实时目标检测
基于 PyTorch 和 YOLO 的实时目标检测
|
机器学习/深度学习 固态存储 算法
计算机视觉PyTorch实现目标检测:SSD
计算机视觉PyTorch实现目标检测:SSD
100 0
|
机器学习/深度学习 XML PyTorch
深度学习之目标检测--Pytorch实战 2
深度学习之目标检测--Pytorch实战
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习之目标检测--Pytorch实战 1
深度学习之目标检测--Pytorch实战
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】26 MaskR-CNN内置模型实现目标检测
将COCO2017数据集上的预训练模型maskrcnm_resnet50_fpn_coco加载到内存,并使用该模型对图片进行目标检测。
195 0
|
机器学习/深度学习 人工智能 算法
【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型
目标检测任务的精度相对较高,主要是以检测框的方式,找出图片中目标物体所在的位置。目标检测任务的模型运算量相对较小,速度相对较快。
337 0
|
机器学习/深度学习 算法 PyTorch
GitHub趋势榜第一:超强PyTorch目标检测库Detectron2,训练更快,支持更多任务
Detectron2是在PyTorch里从零开始写成的,团队希望这种做法,能让用户享受PyTorch做深度学习的思路。社区更活跃的话,PyTorch也会变得更好。
GitHub趋势榜第一:超强PyTorch目标检测库Detectron2,训练更快,支持更多任务

热门文章

最新文章