《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(上)——三、产品相关概念(上)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
全局流量管理 GTM,标准版 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(上)——三、产品相关概念(上)

1. 数据库对象及操作

 

数据库对象的体系结构可以从用户视角和系统视角查看,用户视角类似使用MySQL一样,可以创建多个数据库,在每个数据库下面创建多个数据表,而在系统视角一个用户实例对应一个集群,而集群对应的是物理的数据库,该数据库为分布式的大规模并行MPP架构,数据库会分片到不同的节点上,而每个分片对应着物理表,通过Partition实现分区,分片是一级分区,分区是二级分区。

 

image.png

 

数据库对象的体系结构有以下概念:

 

用户集群:一个用户实例就是一个集群、用户集群资源独享

物理库:一个用户集群系统默认初始化一个物理库

数据库:逻辑数据库,最多256个表名空间和权限隔离

表:普通表又称分布式表,需要指定分布键维度表又称广播表,每个节点冗余一份

分片:表被分布键拆分后的子表,又称分片Shard)。

分区分片Shard可以再按某个字段划分为分区分片列通常是时间字段,有生命周期管理功能

 

1) 表:分区数据清除机制

 

数据清理机制:表元数据记录表的生命周期设置数,下面示例设LIFECYCLE 90,通过对分区的排序,超出生命周期数的分区将被清理掉,如图所示:

image.png

 

2) 数据建模SQL开发规范

 

编写和优化SQL时,需要充分考虑其分布式特性,开发规范如下:

 

SQL编写原则为追求简单一般情况下,数据库性能会随SQL复杂度而下降。例如,单表查询冗余设计优于表关联查询

SQL优化核心方法是减少I/O尽可能少的进行列扫描,返回最小数据量,减少I/O同时也减少内存开销

分布式计算,本地计算&并行计算大数据计算情况下,本地计算时充分利用分布式多计算资源的能力,避免数据跨节点

高QPS,分区裁剪业务系统要求高QPS、毫秒级RT时,表和SQL必须设计为分区裁剪模式。

 

a) 去掉不必要的列

 

返回的列的数量直接影响性能,在编写SQL时要确认业务需要返回的列,不要直接使用星号*进行查询,如:

 

错误SQL

 

select * from tab1 where c1>100 and c1<1000;

 

 

正确SQL

 

select col1,col2 from table_name where C1>100 andc1<1000;

 

b) 索引和扫描

 

当SQL包含多个查询条件时,优先选择高筛选条件,其他条件可以通过扫描实现在SQL命令中通过条件c1=3可快速查询到少量记录假设10000,单独使用time>'2010-01-0100:00:00'时返回的记录数又非常大,如:

 

原始SQL

 

select c1,c2 from tab1 where c1=3 and time >='2010-01-01 00:00:00';

 

建议SQL

 

/*no-index=itab1.time*/

selectc1,c2 from tab1 where c1=3 and time>='2010-01-01 00:00:00';

 

2. 权限与数据安全

 

1) 账号类型

 

阿里云账号

 作用范围AnalyticDB for MySQL集群

 可进行的操作:阿里云账号用于创建和管理集群,例如登录阿里云产品控制台、设置白名单、创建数据库账号、申请外网地址、按量付费转包年包月、设置可维护时间段、扩容集群、恢复新集群以及删除集群等。

 

RAM子账号

 作用范围,AnalyticDB for MySQL集群

 可进行的操作:阿里云账号授予RAM子账号一定的权限后,RAM子账号也可以在权限范围内创建和管理集群例如登录阿里云产品控制台、设置白名单、创建数据库账号、申请外网地址、按量付费转包年包月、设置可维护时间段、扩容集群、恢复新集群以及删除集群等。

 

数据库账号

 作用范围数据库

 可进行的操作:数据库账号在权限范围内用于对数据库进行操作,例如创建/删除数据库、连接数据库、创建/删除表、创建/删除视图等。分为普通账号和高权限账号。

 

服务账号

 作用范围AnalyticDB for MySQL集群

 可进行的操作:需要技术支持时授权AnalyticDB for MySQL集群的服务账号,技术支持人员才可以通过服务账号提供技术支持服务。

 

2) 用户

 

用户账号和认证

 账号格式:ALIYUN$user_account@aliyun.com

 认证需要使用AccessKey

 

用户类型

 OWNER:数据库拥有者,开通云原生数据仓库服务,并创建数据

 用户:被授权的数据库用户,由OWNER添加,无需开通云原生数据仓库服务

 

RAM子账号

 支持RAM阿里云访问控制子账号登录和使用云原生数据仓库

 主账号可建多个子账号,通过授予授权策略,使子账号在一定条件下可以访问云原生数据仓库

 子账号访问云原生数据仓库的MySQL协议端时需要使用其的AccessKey ID/Secret作为用户名和密码。

 

3) 权限模型

 

AnalyticDB for MySQL集群支持如下粒度的权限控制:集群、数据库、表、列、行级基于视图,如下图

 

image.png

 

4) SQL审计

 

SQL审计功能可以实时记录数据库DML和DDL操作信息,并提供数据库操作信息的检索功能,提高云原生数据仓库AnalyticDB MySQL版的安全性。

 

SQL审计日志:记录对数据库执行的所有操作。通过审计日志记录,用户可以对数据库进行故障分析、行为分析、安全审计等操作。

搜索:可以按照数据库、客户端IP、执行耗时、执行状态等进行多维度检索,并支持导出搜索结果。

 

3. 智能索引

 

ADB为表的每个字段智能构建索引,目前支持五种类型:字符串类的Invert索引(倒排索引)、bitmap索引、数值类的KDTree索引、JSON索引、向量索引。

 

不同类型的索引可以实现列级索引多种条件(交、并、差)任意组合,查询时无需建组合索引,通过Index CBO 智能动态筛选索引下推,通过谓词计算层进行流式渐进多路归并输出。

image.png

 

倒排索引

分区表的所有列适用Bitmap索引的列除外都建了倒排索引,key为排序的列值,value为对应的RowlD list,所以对于任何列进行FILTERWHERE key=value或者JOIN查询都非常高效。

 

Bitmap索引

对于值重复率高的列,建立Bitmap索引。

 

KDTree索引

为了加速范围查询,对于类型为数字的列同时建立了KDTree索引。

 

行列混存的块索引

块索引即块的元数据信息。

image.png

 

分区元数据:分区总行数,单个block中的列行数等信息。

列元数据:列值类型、整列的MAX/MIN值,NULL值数目,直方图信息等,便于加速查询。

列Block元数据:该列的MAX/MIN/SUM总条目数(COUNT)等信息,便于加速查询。

 

说明

复杂类型数据json,vector存储采用统一大小的块组织存储,按顺序存,采用稀疏索引查询。

 

更多精彩内容,欢迎观看:

《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(上)——三、产品相关概念(下):https://developer.aliyun.com/article/1223283?groupCode=certification

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
27 10
|
3天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。
|
4天前
|
监控 Cloud Native Java
云原生架构下微服务治理策略与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境下微服务架构的治理策略,通过分析当前技术趋势与挑战,提出了一系列高效、可扩展的微服务治理最佳实践方案。不同于传统摘要概述内容要点,本部分直接聚焦于治理核心——如何在动态多变的分布式系统中实现服务的自动发现、配置管理、流量控制及故障恢复,旨在为开发者提供一套系统性的方法论,助力企业在云端构建更加健壮、灵活的应用程序。 ####
44 10
|
4天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第20天】本文探讨了MongoDB Atlas的核心特性、实践应用及对未来云原生数据库的思考。MongoDB Atlas作为云原生数据库服务,具备全球分布、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了实施MongoDB Atlas的最佳实践和职业心得,展望了云原生数据库的发展趋势。
|
4天前
|
运维 Cloud Native 持续交付
云原生架构下的微服务设计原则与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境中微服务设计的几大核心原则,包括服务的细粒度划分、无状态性、独立部署、自动化管理及容错机制。通过分析这些原则背后的技术逻辑与业务价值,结合具体案例,展示了如何在现代云平台上实现高效、灵活且可扩展的微服务架构,以应对快速变化的市场需求和技术挑战。 ####
23 7
|
3天前
|
存储 弹性计算 NoSQL
"从入门到实践,全方位解析云服务器ECS的秘密——手把手教你轻松驾驭阿里云的强大计算力!"
【10月更文挑战第23天】云服务器ECS(Elastic Compute Service)是阿里云提供的基础云计算服务,允许用户在云端租用和管理虚拟服务器。ECS具有弹性伸缩、按需付费、简单易用等特点,适用于网站托管、数据库部署、大数据分析等多种场景。本文介绍ECS的基本概念、使用场景及快速上手指南。
17 3
|
2天前
|
敏捷开发 Cloud Native 持续交付
云原生技术在现代企业中的应用与实践
【10月更文挑战第23天】本文将深入探讨云原生技术在现代企业中的广泛应用,并结合具体案例分析其对企业数字化转型的推动作用。我们将从云原生技术的基本原理出发,逐步揭示其在提高业务敏捷性、降低成本和增强系统可靠性方面的优势。同时,文章还将分享一系列成功实施云原生技术的企业案例,为读者提供实践中的参考和启示。最后,我们将讨论云原生技术面临的挑战及未来的发展趋势,为企业在这一领域的进一步探索提供指导。
|
3天前
|
监控 Cloud Native 测试技术
云原生架构下的性能优化与实践####
【10月更文挑战第21天】 本文深入探讨了在云原生环境下,如何通过一系列技术手段和最佳实践来提升应用性能。文章首先概述了云原生架构的基本原则与优势,随后详细分析了影响性能的关键因素,包括容器编排、微服务设计、持续集成/持续部署(CI/CD)流程以及监控与日志管理。针对这些因素,文中不仅介绍了具体的优化策略,如资源请求与限制的合理配置、服务间通信的高效实现、自动化测试与部署的优化,还结合案例分析,展示了如何在实际项目中有效实施这些策略以显著提升系统响应速度和处理能力。此外,文章还强调了性能测试的重要性,并提供了几种常用的性能测试工具和方法。最后,总结了云原生性能优化的未来趋势,为开发者和架构师
9 2
|
4天前
|
运维 Cloud Native API
云原生时代下的微服务架构实践
【10月更文挑战第22天】在数字化转型的浪潮中,云原生技术正以前所未有的速度重塑软件开发和运维的模式。微服务架构作为云原生的重要组成部分,其设计哲学、技术栈选择以及与传统单体应用的根本区别成为了现代软件工程讨论的焦点。本文将深入探讨微服务架构的核心概念,通过实际案例分析其在云平台下的应用,并分享在实施过程中的经验教训,旨在为读者提供一套清晰的微服务架构实践指南。
|
3月前
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样

推荐镜像

更多