《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(上)——三、产品相关概念(下)

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(上)——三、产品相关概念(下)

更多精彩内容,欢迎观看:

《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(上)——三、产品相关概念(上):https://developer.aliyun.com/article/1223285?spm=a2c6h.12873581.technical-group.dArticle1223285.7f76b096Fuo2WN



4. 数据存储冷热分离

 

1) 冷热数据分层

 

AnalyticDB可以按表粒度、表的二级分区粒度独立选择冷、热存储介质,AnalyticDB数据写入时,数据会首先进入热空间SSD上,当热存储数据积累到一定程度或者用户指定的冷表策略时会自动调度后台的Build任务,把数据迁移到冷存储空间。

 

冷数据:指的是访问频次较低的数据,采用低价的HDD存储,满足存储空间的需求。

热数据:指的是访问频次较高的数据,采用SSD存储,满足高性能访问的需求。

 

可以执行CREATE TABLE语句指定表的冷热存储策略为:全热存储数据全部存储在SSD、全冷存储数据全部存储在HDD、冷热混合存储指定一定数量的分区存储在SSD,其余数据存储在HDD

 

image.png

 

2) 冷热分层设计

 

在创建表时可以指定表的冷热数据存储:

 

全热表设置storage_prollcy=‘Hot’

全冷表设置storage_prollcy=‘Cold’

冷热混合表设置storage_prollcy=‘Mixed’,且要指定热分区的个数

 

冷热分层设计优点:

 

可以获取高性价比,完全按量付费。

冷热策略轻松定义:只需指定表的冷热策略即可享有冷热存储能力,无需额外购买资源。

冷热分区自动迁移:异步迁移,业务无感知,不影响读写。

查询和内外部接口统一,在离线一体化,数据强一致。

 

3) 冷热数据存储诊断表

 

AnalyticDB MySQL版弹性模式集群版3.1.3.5及以上版本支持数据的冷热分离存储,用户可以通过查表的方式,查询某一张表的冷热数据存储布局情况。

 

查询所有表的存储状态

 

select * from information schema.table usage

 

查询单个表的存储状态

 

select * from information_schema.table_usage where table schema='$schema name' and table name='$table name'

 

如下图,Table A中有两个分片,指定hot_partition_count为2,但实际显示的hot_partition_count大于用户定义的hot_partition_count。

image.png

 

参考table_usage表字段信息

https://help.aliyun.com/document_detail/189727.html

 

5. 物化视图

 

物化视图是数仓领域的核心特性之一。不同于逻辑视图(view),物化视图(materialized view)会持久化视图的查询结果。

物化视图可用于加速分析,并能简化ETL,适用于多种场景,例如报表类业务,大屏展示需求,来自BI工具的查询等等。

 

1) 创建物化视图的语法

 

CREATE MATERIALIZED VIEW <mv_name>

[MV DEFINITION]

[REFRESH COMPLETE [ON <DEMAND|OVERWRITE>] [STARTWITH date] [NEXT date]]

AS

<QUERY BODY>;

 

示例

 

#指定列建立索引,默认全部列建立索引

CREATE MATERIALIZED VIEW myview(INDEX (name),PRIMARY KEY (id)) DISTRIBUTED BY HASH (id)

AS

SELECT id,name,age FROM base;

#指定分区键和注释

CREATE MATERIALIZED VIEW c (

namevarchar(10),

value double,

KEY INDEX_ID(id) COMMENT 'id',

CLUSTERED KEY INDEX(name,value),

PRIMARY KEY(id)

)

DISTRIBUTED BY hash(id)

PARTITION BY value(date_format(dat,"%Y%m%d"))

LIFECYCLE 30

COMMENT 'MATERIALIZED VIEW C'

AS

SELECT * FROM base;

 

2) 物化视图客户案例

 

案例:生意参谋使用物化视图降低客户查询延迟时间。

 

生意参谋是阿里巴巴旗下为千万商家提供的一项重要产品服务,帮助商家及时分析店铺运营情况,尤其是在大促期间,面对突发的流量和海量的数据,数据分析尤为重要。

利用物化视图,可以大幅降低延迟时间。将每小时展示信息结果存储到物化视图中,每次查询只需要查询物化视图即可,平均每次查询时间降低至100毫秒。

 

image.png

 

6. 备份恢复

image.png

 

1) 备份恢复

 

数据按周全量备份、日志秒级实时备份

支持数据恢复到时间点

 

2) 只读/容灾实例(on-going)

 

只读/容灾实例

数据跨实例自动复制

 

3) 备份恢复与容灾

 

为确保数据误操作后,AnalyticDB MySQL版具备数据快速恢复的能力,集群创建成功后,AnalyticDB MySQL版会自动在后台开启数据备份功能,实现集群级别的数据备份。在AnalyticDB MySQL版控制台查看集群的备份集或修改备份设置。

image.png

 

4) 克隆集群

 

可以根据AnalyticDB MySQL版源集群的已有备份集克隆一个AnalyticDB MySQL版新集群。

 

在业务正式上线前,通常需要模拟一个和正式集群一样的环境进行测试(如压力测试),此时您可以根据源AnalyticDBMySQL版集群克隆一个新的AnalyticDB MySQL版集群,并在克隆集群上进行测试,从而既能确保测试的真实性,又不会影响正常业务的运行。

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
2月前
|
SQL 分布式计算 DataWorks
破界·融合·进化:解码DataWorks与Hologres的湖仓一体实践
基于阿里云DataWorks与实时数仓Hologres,提供统一的大数据开发治理平台与全链路实时分析能力。DataWorks支持多行业数据集成与管理,Hologres实现海量数据的实时写入与高性能查询分析,二者深度融合,助力企业构建高效、实时的数据驱动决策体系,加速数字化升级。
|
5月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
420 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
15天前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
98 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
5月前
|
人工智能 关系型数据库 OLAP
光云科技 X AnalyticDB:构建 AI 时代下的云原生企业级数仓
AnalyticDB承载了光云海量数据的实时在线分析,为各个业务线的商家提供了丝滑的数据服务,实时物化视图、租户资源隔离、冷热分离等企业级特性,很好的解决了SaaS场景下的业务痛点,也平衡了成本。同时也基于通义+AnalyticDB研发了企业级智能客服、智能导购等行业解决方案,借助大模型和云计算为商家赋能。
368 17
|
5月前
|
存储 SQL 运维
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
201 0
中国联通网络资源湖仓一体应用实践
|
5月前
|
存储 消息中间件 分布式计算
Hologres实时数仓在B站游戏的建设与实践
本文介绍了B站游戏业务中实时数据仓库的构建与优化过程。为满足日益增长的数据实时性需求,采用了Hologres作为核心组件优化传统Lambda架构,实现了存储层面的流批一体化及离线-实时数据的无缝衔接。文章详细描述了架构选型、分层设计(ODS、DWD、DIM、ADS)及关键技术挑战的解决方法,如高QPS点查、数据乱序重写等。目前,该实时数仓已广泛应用于运营分析、广告投放等多个场景,并计划进一步完善实时指标体系、扩展明细层应用及研发数据实时解析能力。
Hologres实时数仓在B站游戏的建设与实践
|
6月前
|
存储 分布式计算 MaxCompute
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
|
5月前
|
存储 消息中间件 Java
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
321 12
抖音集团电商流量实时数仓建设实践
|
6月前
|
存储 安全 数据挖掘
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
299 2
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践

推荐镜像

更多
  • DNS