【机器学习】分类模型评价指标(混淆矩阵、ROC)(已修改,放心看)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 【机器学习】分类模型评价指标(混淆矩阵、ROC)(已修改,放心看)

分类模型的评价指标:交叉熵、混淆矩阵、ROC曲线


交叉熵


根据上文:Logistic回归—学习笔记,从KL散度了解到,当交叉熵值越小,预测模型越接近真实模型,固然可以用交叉熵作为度量模型优化算法效果的一个指标

image.png

交叉熵是度量优化算法效果的一个相对指标,可以用于对比不同算法的效果,但它不适用于判断单个算法的预测效果 。

我的理解:交叉熵可以用来比较不同模型的优劣,而不适用对单一模型的预测效果的判定


混淆矩阵(本身不是评价指标,只是一个特殊的矩阵)


混淆矩阵:


实际为正例
实际为反例
预测为正例 TP FP
预测为反例 FN TN


  • T:预测标签和实际标签相同(预测正确)
  • F:预测标签和实际标签不相同(预测错误)
  • P:预测标签为正例
  • N:预测标签为反例


准确率(Accuracy)

image.png

:预测正确(T)占所有样本的比例

在整体样本中,预测正确的样本比例


精准率(Precision)

image.png

:预测和实际标签都为正例(TP)占所有正例样本的比例

预测正例样本中,预测正确的比例


召回率(Recall)


image.png

:预测和实际标签都为正例(TP)占所有预测标签为正例的比例

实际正例样本中,被预测正确的比例


F1值(F1-score)


image.png

:F1值是一种常用的分类模型评价指标,它综合了模型的准确率和召回率两个指标。


F1值越大,说明模型在同时考虑准确率和召回率时表现越好。当一个分类器的precision和recall都很高时,F1值也会相应地很高;但是如果一个指标很高而另一个指标很低,则F1值会降低。因此,F1值可以作为评估二分类问题解决方案优劣的综合指标。


这个还是挺重要的

下面是一个二分类问题的混淆矩阵例子:

预测/实际 实际为正例 实际为反例
预测为正例 30 10
预测为反例 20 40

解释:该混淆矩阵表示模型在测试数据集上共有100个样本,其中实际为正例的有50个,实际为反例的有50个。模型将其中30个正例正确地预测为正例,20个正例错误地预测为反例;将其中40个反例正确地预测为反例,10个反例错误地预测为正例。


通过混淆矩阵可以计算出多种分类指标,例如:


准确率(Accuracy):预测正确的样本数占总样本数的比例,即 (30+40)/(30+20+10+40) = 70%

精确率(Precision):预测为正例且实际为正例的样本数占预测为正例的样本数的比例,即 30/(30+20) = 60%

召回率(Recall):预测为正例且实际为正例的样本数占实际为正例的样本数的比例,即 30/(30+10) = 75%

F1值(F1-score):精确率和召回率的调和平均数,即 2 * Precision * Recall / (Precision + Recall) = 66.7%


ROC曲线


 ROC曲线(Receiver Operating Characteristic Curve)是一种常用的二分类模型性能评估工具,其横轴为假正率(False Positive Rate, FPR),纵轴为真正率(True Positive Rate, TPR),ROC曲线的绘制是通过将不同阈值下的真正率和假正率作为坐标点绘制而成。

daadb0f579a64dc2b3fd6a8e5d115b95_95b7161c286c42a48277591746323247.png

19b02656ec83e84589a926daa7ed826d_fe69b2626fc94c698b36bb3c316a7f7b.png


在ROC曲线上,理想情况下一个好的分类器应该尽可能靠近左上角,即TPR高,FPR低。而对于随机分类器,则会沿着y=x的直线进行绘制,代表了没有区分能力的分类器所呈现出来的性能。


另外,ROC曲线下面的面积AUC(Area Under the ROC Curve)也是评估分类器性能的指标之一,其数值范围在0.5到1之间,数值越接近1则代表分类器性能越好。


推荐视频:ROC曲线详解


相关文章
|
20天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
276 109
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
162 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
2月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
191 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
2月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
10月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1028 6
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI