❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦
🚀 「国产模型逆袭!小米7B小钢炮干翻32B巨无霸,技术白皮书揭秘三阶段训练法」
大家好,我是蚝油菜花。当科技大厂还在比拼参数规模时,小米用这个开源模型证明了——小身材也能爆发大智慧!你是否遇到过这些AI推理困境:
- ∑ 数学题分步解析总在关键步骤「跳步」
- 💻 生成的代码看似能用,实际藏了三个语法坑
- ⏱️ 等大模型推理结果时,咖啡都喝完了两杯...
今天解剖的 Xiaomi MiMo ,正在重写推理模型的效率规则!这个7B参数的「逻辑刺客」:
- ✅ 数学推理开挂:在GSM8K测评中碾压部分32B模型
- ✅ 代码生成防坑:自动规避常见语法陷阱,可用率提升63%
- ✅ 训练效率革命:独创三阶段训练法,用25T tokens练就「最强大脑」
已有教育机构用它开发AI解题助手,文末附《7B模型调优指南》——你的推理任务,准备好迎接「小米效率」了吗?
🚀 快速阅读
小米开源的首个推理大模型MiMo突破参数规模限制。
- 能力:7B参数实现数学推理与代码生成双重突破
- 技术:采用三阶段预训练+强化学习优化框架
Xiaomi MiMo 是什么
Xiaomi MiMo 是小米推出的开源推理大模型,通过创新的训练框架在7B参数规模下实现超越更大模型的推理性能。其核心突破在于联动预训练与后训练阶段,专门针对复杂推理任务进行优化。
该模型包含4个版本:基础预训练模型、监督微调模型及两个强化学习版本,均已开源。技术报告显示,MiMo在数学推理和代码生成任务中显著优于部分32B参数规模的竞品模型。
Xiaomi MiMo 的主要功能
- 数学推理突破:解决多步骤数学问题并提供完整推导过程
- 智能代码生成:输出可直接运行的代码,支持多种编程语言
- 高效推理架构:7B参数实现超越部分32B模型的性能表现
Xiaomi MiMo 的技术原理
- 三阶段预训练:逐步提升训练难度,累计25T tokens训练量
- 强化学习优化:Test Difficulty Driven Reward算法解决奖励稀疏问题
- 训练加速系统:Seamless Rollout框架使RL训练提速2.29倍
- 数据策略创新:Easy Data Re-Sampling稳定强化学习过程
如何运行 MiMo-7B
vLLM 推理
1. 推荐使用我们分叉的 vLLM
我们官方支持使用 MiMo-MTP 进行推理,使用 我们分叉的 vLLM。
示例脚本:
from vllm import LLM, SamplingParams
model_path = "/path/to/MiMo"
llm = LLM(
model=model_path,
trust_remote_code=True,
num_speculative_tokens=1,
disable_log_stats=False
)
sampling_params = SamplingParams(temperature=0.6)
conversation = [
{
"role": "system",
"content": ""
},
{
"role": "user",
"content": "写一篇关于高等教育重要性的文章。",
},
]
outputs = llm.chat(conversation,
sampling_params=sampling_params,
use_tqdm=False)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"提示: {prompt!r}, 生成的文本: {generated_text!r}")
print("=" * 80)
2. 或者,你可以注册一个不加载 MTP 参数的 vLLM 加载器
你可以将 registry/register_mimo_in_vllm.py
复制到你的目录中,并通过以下方式导入:
import register_mimo_in_vllm
from vllm import LLM, SamplingParams
model_path = "/path/to/MiMo"
llm = LLM(
model=model_path,
trust_remote_code=True,
# num_speculative_tokens=1,
disable_log_stats=False
)
sampling_params = SamplingParams(temperature=0.6)
HuggingFace 推理
示例脚本:
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
model_path = "/path/to/MiMo"
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path)
inputs = tokenizer(["Today is"], return_tensors='pt')
output = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(output.tolist()[0]))
资源
- GitHub 仓库:https://github.com/XiaomiMiMo
- HuggingFace 仓库:https://huggingface.co/XiaomiMiMo
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦