BP神经网络(Back Propagation Neural Network)算法原理推导与Python实现详解

简介: BP神经网络(Back Propagation Neural Network)算法原理推导与Python实现详解

正文


##BP神经网络算法推导

给定训练集:

D={(x1,y1),(x2,y2),...,(xm,ym)},xiRI,yiRO

即数据有D 个特征,标签为O 维实值向量。


因此,我们定义一个拥有I 个输入层神经元、O个输出层神经元的神经网络,且设该网络的隐藏层神经元个数为H。

其中,隐藏层第h 个神经元的阀值用γ h 表示,输出层第o 个神经元的阀值用θ  表示。

输入层第i ii个神经元与隐藏层第h hh个神经元之间的连接权重为ν i h,记隐藏层第h hh个神经元接收到的输入为α h = ∑ i = 1 I ν i h x i  

隐藏层第h hh个神经元与输出层第o oo个神经元之间的连接权重为ω h o ,记输出层第o oo个神经元接收到的输入为β o = ∑ h = 1 H ω h o b h 其中b h 为隐藏层第h 个神经元的输出。

假设隐藏层和输出层都使用Sigmoid函数作为激活函数

Sigmoid函数:

5.png

对于训练集中的一个训练例k :6.png假设神经网络的输出为7.png,则有:

8.png

由此可以得到,神经网络在训练例k kk上的均方误差为:

9.png

BP是一个迭代学习算法,迭代的每一轮都会对权重进行更新,基于梯度下降算法和链式求导法则,我们可以得到:

1、对隐藏层第h hh个神经元与输出层第o oo个神经元之间的连接权重ω h o  的更新估计式为:

10.png

其中

11.png

因此,权重ω h o 的更新估计式为:


12.png

2、对输入层第i ii个神经元与隐藏层第h hh个神经元之间的连接权重ν i h 的更新估计式为:


13.png

其中:

14.png15.png16.png

因此,权重ν i h  的更新估计式为

18.png


##BP神经网络Python实现

该神经网络被设置为三层:一层输入层、一层隐藏层、一层输出层

样本集:

特征一 特征二 标签
0 0 0
0 1 1
1 0 1
1 1 0


可以看出,这就是一个异或样本集,使用这个样本集可以展现出神经网络与感知机在处理非线性可分问题上的差别。

import math
import random
# 用于设置权重矩阵的大小并给定初始权重
def weight_matrix(row, col, weight=0.0):
    weightMat = []
    for _ in range(row):
        weightMat.append([weight] * col)
    return weightMat
# 用于给权重矩阵内的每元素生成一个初始随机权重
def random_weight(parm_1, parm_2):
    return (parm_1 - 1) * random.random() + parm_2
# Sigmoid激活函数
def sigmoid(x):
    return 1.0 / (1.0 + math.exp(-x))
# Sigmoid激活函数的导函数
def sigmoid_derivate(x):
    return x * (1 - x)
# 定义BP神经网络类
class BPNeuralNetwork:
    def __init__(self):
        # 定义输入层、隐藏层、输出层,所有层的神经元个数都初始化为0
        self.input_num, self.hidden_num, self.output_num = 0, 0, 0
        # 定义输入层、隐藏层、输出层的值矩阵,并在setup函数中初始化
        self.input_values, self.hidden_values, self.output_values = [], [], []
        # 定义输入-隐藏层、隐藏-输出层权重矩阵,并在setup函数中设置大小并初始化
        self.input_hidden_weights, self.hidden_output_weights = [], []
    # 神经网络的初始化函数
    # 四个参数分别代表:对象自身、输入层神经元个数、隐藏层神经元个数、输出层神经元个数
    def setup(self, input_num, hidden_num, output_num):
        # 设置输入层、隐藏层、输出层的神经元个数,其中输入层包含偏置项因此数量+1
        self.input_num, self.hidden_num, self.output_num = input_num + 1, hidden_num, output_num
        # 初始化输入层、隐藏层、输出层的值矩阵,均初始化为1
        self.input_values = [1.0] * self.input_num
        self.hidden_values = [1.0] * self.hidden_num
        self.output_values = [1.0] * self.output_num
        # 设置输入-隐藏层、隐藏-输出层权重矩阵的大小
        self.input_hidden_weights = weight_matrix(self.input_num, self.hidden_num)
        self.hidden_output_weights = weight_matrix(self.hidden_num, self.output_num)
        # 初始化输入-隐藏层、隐藏-输出层的权重矩阵
        for i in range(self.input_num):
            for h in range(self.hidden_num):
                self.input_hidden_weights[i][h] = random_weight(-0.2, 0.2)
        for h in range(self.hidden_num):
            for o in range(self.output_num):
                self.hidden_output_weights[h][0] = random_weight(-0.2, 0.2)
    # 神经网络的前向预测
    # 两个参数分别代表:对象自身、单个数据
    def predict(self, data):
        # 将数据放入输入层,-1是由于输入层中的偏置项不需要接收数据
        for i in range(self.input_num - 1):
            self.input_values[i] = data[i]
        # 隐藏层计算
        for h in range(self.hidden_num):
            # 激活函数的参数
            total = 0.0
            # 激活函数的参数值由输入层权重和输入层的值确定
            for i in range(self.input_num):
                total += self.input_values[i] * self.input_hidden_weights[i][h]
            # 将经过激活函数处理的输入层的值赋给隐藏层
            self.hidden_values[h] = sigmoid(total - 0)
        # 输出层计算
        for o in range(self.output_num):
            total = 0.0
            for h in range(self.hidden_num):
                total += self.hidden_values[h] * self.hidden_output_weights[h][o]
            self.output_values[o] = sigmoid(total - 0)
        return self.output_values[:]
    # 神经网络的反向传播
    # 四个参数分别代表:对象自身、单个数据、数据对应的标签、学习率(步长)
    # 本函数皆为数学推导的实现
    def back_propagate(self, data, label, learn):
        # 反向传播前先进行前向预测
        self.predict(data)
        # 计算输出层的误差
        output_datas = [0.0] * self.output_num
        for o in range(self.output_num):
            error = label[o] - self.output_values[o]
            output_datas[o] = sigmoid_derivate(self.output_values[o]) * error
        # 计算隐藏层的误差
        hidden_datas = [0.0] * self.hidden_num
        for h in range(self.hidden_num):
            error = 0.0
            for o in range(self.output_num):
                error += output_datas[o] * self.hidden_output_weights[h][o]
            hidden_datas[h] = sigmoid_derivate(self.hidden_values[h]) * error
        # 更新隐藏-输出层权重
        for h in range(self.hidden_num):
            for o in range(self.output_num):
                self.hidden_output_weights[h][o] += learn * output_datas[o] * self.hidden_values[h]
        # 更新输入-隐藏层权重
        for i in range(self.input_num):
            for h in range(self.hidden_num):
                self.input_hidden_weights[i][h] += learn * hidden_datas[h] * self.input_values[i]
        # 计算样本的均方误差
        error = 0
        for o in range(len(label)):
            error += 0.5 * (label[o] - self.output_values[o]) ** 2
        return error
    # 神经网络训练函数
    # 四个参数分别代表:对象自身、数据集、标签、最大循环次数、学习率、终止误差
    def train(self, datas, labels, limit=50000, learn=0.05, stop_error=0.02):
        for i in range(limit):
            error = 0
            for i in range(len(datas)):
                data = datas[i]
                label = labels[i]
                error += self.back_propagate(data, label, learn)
            if error <= stop_error:
                break
    # 神经网络验证函数
    def test(self):
        # 数据集及其标签
        datas = [[0, 0], [0, 1], [1, 0], [1, 1]]
        labels = [[0], [1], [1], [0]]
        # 调用神经网络的初始化函数并传入参数作为输入层、隐藏层、输出层的神经元个数
        # 其中输入层的神经元个数应与数据集的特征数保持一致
        self.setup(2, 5, 1)
        self.train(datas, labels)
        for data in datas:
            print(self.predict(data))
# 定义BP神经网络对象并调用其进行预测
if __name__ == '__main__':
    nn = BPNeuralNetwork()
    nn.test()


神经网络训练结果:

[0.018648283776391633]
[0.9754998553712237]
[0.9806999914518663]
[0.02997622156919269]


该结果与真实值labels[0, 1, 1, 0]基本类似,可以认为神经网络在预测异或这类非线性可分问题上是有效的。



相关文章
|
11天前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
160 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
10天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
49 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10天前
|
监控 算法 安全
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
37 10
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
97 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
13天前
|
机器学习/深度学习 API Python
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
|
27天前
|
网络协议 安全 网络安全
应用程序中的网络协议:原理、应用与挑战
网络协议是应用程序实现流畅运行和安全通信的基石。了解不同协议的特点和应用场景,以及它们面临的挑战和应对策略,对于开发者和用户都具有重要意义。在未来,随着技术的不断发展,网络协议也将不断优化和创新,为数字世界的发展提供更强大的支持。
|
2月前
|
安全 Linux 网络安全
利用Python脚本自动备份网络设备配置
通过本文的介绍,我们了解了如何利用Python脚本自动备份网络设备配置。该脚本使用 `paramiko`库通过SSH连接到设备,获取并保存配置文件。通过定时任务调度,可以实现定期自动备份,确保网络设备配置的安全和可用。希望这些内容能够帮助你在实际工作中实现网络设备的自动化备份。
78 14
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
385 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
3月前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
3月前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密

热门文章

最新文章