【栅格地图路径规划】基于动态衡量启发式A星算法实现机器人栅格地图路径规划附matlab代码

简介: 【栅格地图路径规划】基于动态衡量启发式A星算法实现机器人栅格地图路径规划附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

一种基于动态权重的A星算法改进方法,其中方法包括:对A星算法的估价函数进行改进;设计动态权值生成器,根据环境信息实时生成当前节点的启发式权值;当机器人离起始点较近时,h(n)占的比重较大;当机器人不断接近目标时,g(n)的权值逐渐增加;其中,h(n)为从指定位置运行到终点的估计代价,g(n)为从起点移动到指定方格的移动代价.本发明在机器人对目标点进行寻路地过程中,通过对A星算法的路径评价函数加入实时调整的动态启发式权值,来实现寻路的精确度与效率的统一.

⛄ 部分代码

%%

%这个矩阵的作用就是随机生成环境,障碍物,起始点,终止点等

function [field, startposind, goalposind, costchart, fieldpointers] = initializeField(n,wallpercent)

   field = 10*ones(n,n);%设置任意两方格间的距离为10

   field(ind2sub([n n],ceil(n^2.*rand(n*n*wallpercent,1)))) = Inf;%向上取整

   % 随机生成起始点和终止点

   startposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand));  %随机生成起始点的索引值

   goalposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand));   %随机生成终止点的索引值

   field(startposind) = 0; field(goalposind) = 0;  %把矩阵中起始点和终止点处的值设为0

   

   costchart = NaN*ones(n,n);%生成一个nxn的矩阵costchart,每个元素都设为NaN。就是矩阵初始NaN无效数据

   costchart(startposind) = 0;%在矩阵costchart中将起始点位置处的值设为0

   

   % 生成元胞数组

   fieldpointers = cell(n,n);%生成元胞数组n*n

   fieldpointers{startposind} = 'S'; fieldpointers{goalposind} = 'G'; %将元胞数组的起始点的位置处设为 'S',终止点处设为'G'

   fieldpointers(field==inf)={0};

   

 

end

% end of this function

⛄ 运行结果

⛄ 参考文献

[1] 周东健, 张兴国, 马海波,等. 基于栅格地图-蚁群算法的机器人最优路径规划[J]. 南通大学学报:自然科学版, 2013, 12(4):91-94.

[2] 华洪, 张志安, 施振稳,等. 动态环境下多重A算法的机器人路径规划方法[J]. 计算机工程与应用, 2021.

[3] 翟冬灵, 葛凯, 张二阳. 一种基于改进A星策略的移动机器人路径规划方法:.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
10天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
12天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
13天前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
5天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
13 0
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。