【栅格地图路径规划】基于动态衡量启发式A星算法实现机器人栅格地图路径规划附matlab代码

简介: 【栅格地图路径规划】基于动态衡量启发式A星算法实现机器人栅格地图路径规划附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

一种基于动态权重的A星算法改进方法,其中方法包括:对A星算法的估价函数进行改进;设计动态权值生成器,根据环境信息实时生成当前节点的启发式权值;当机器人离起始点较近时,h(n)占的比重较大;当机器人不断接近目标时,g(n)的权值逐渐增加;其中,h(n)为从指定位置运行到终点的估计代价,g(n)为从起点移动到指定方格的移动代价.本发明在机器人对目标点进行寻路地过程中,通过对A星算法的路径评价函数加入实时调整的动态启发式权值,来实现寻路的精确度与效率的统一.

⛄ 部分代码

%%

%这个矩阵的作用就是随机生成环境,障碍物,起始点,终止点等

function [field, startposind, goalposind, costchart, fieldpointers] = initializeField(n,wallpercent)

   field = 10*ones(n,n);%设置任意两方格间的距离为10

   field(ind2sub([n n],ceil(n^2.*rand(n*n*wallpercent,1)))) = Inf;%向上取整

   % 随机生成起始点和终止点

   startposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand));  %随机生成起始点的索引值

   goalposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand));   %随机生成终止点的索引值

   field(startposind) = 0; field(goalposind) = 0;  %把矩阵中起始点和终止点处的值设为0

   

   costchart = NaN*ones(n,n);%生成一个nxn的矩阵costchart,每个元素都设为NaN。就是矩阵初始NaN无效数据

   costchart(startposind) = 0;%在矩阵costchart中将起始点位置处的值设为0

   

   % 生成元胞数组

   fieldpointers = cell(n,n);%生成元胞数组n*n

   fieldpointers{startposind} = 'S'; fieldpointers{goalposind} = 'G'; %将元胞数组的起始点的位置处设为 'S',终止点处设为'G'

   fieldpointers(field==inf)={0};

   

 

end

% end of this function

⛄ 运行结果

⛄ 参考文献

[1] 周东健, 张兴国, 马海波,等. 基于栅格地图-蚁群算法的机器人最优路径规划[J]. 南通大学学报:自然科学版, 2013, 12(4):91-94.

[2] 华洪, 张志安, 施振稳,等. 动态环境下多重A算法的机器人路径规划方法[J]. 计算机工程与应用, 2021.

[3] 翟冬灵, 葛凯, 张二阳. 一种基于改进A星策略的移动机器人路径规划方法:.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
7月前
|
Perl
【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)
【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)
|
7月前
|
编解码
MATLAB | 科研绘图第十一期动态趋势图
MATLAB | 科研绘图第十一期动态趋势图
72 0
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
109 0
|
2月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
7月前
|
机器学习/深度学习 算法 安全
m基于Qlearning强化学习工具箱的网格地图路径规划和避障matlab仿真
MATLAB 2022a中实现了Q-Learning算法的仿真,展示了一种在动态环境中进行路线规划和避障的策略。Q-Learning是强化学习的无模型方法,通过学习动作价值函数Q(s,a)来优化智能体的行为。在路线问题中,状态表示智能体位置,动作包括移动方向。通过正负奖励机制,智能体学会避开障碍物并趋向目标。MATLAB代码创建了Q表,设置了学习率和ε-贪心策略,并训练智能体直至达到特定平均奖励阈值。
113 15
车辆行驶控制运动学模型的matlab建模与仿真,仿真输出车辆动态行驶过程
该课题在MATLAB2022a中建立了车辆行驶控制运动学模型并进行仿真,展示车辆动态行驶过程。系统仿真结果包含四张图像,显示了车辆在不同时间点的位置和轨迹。核心程序定义了车辆参数和初始条件,使用ode45求解器模拟车辆运动。车辆运动学模型基于几何学,研究车辆空间位姿、速度随时间变化,假设车辆在平面运动且轮胎无滑动。运动学方程描述位置、速度和加速度关系,模型预测控制用于优化轨迹跟踪,考虑道路曲率影响,提升弯道跟踪性能。
|
6月前
|
算法 机器人
【经典LeetCode算法题目专栏分类】【第5期】贪心算法:分发饼干、跳跃游戏、模拟行走机器人
【经典LeetCode算法题目专栏分类】【第5期】贪心算法:分发饼干、跳跃游戏、模拟行走机器人
|
7月前
|
算法 调度 决策智能
基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)
基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)
|
7月前
|
调度 决策智能
基于条件风险价值CVaR的微网动态定价与调度策略(matlab代码)
基于条件风险价值CVaR的微网动态定价与调度策略(matlab代码)
|
7月前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)