Habitat Challenge 2022冠军方案:字节AI Lab提出融合传统和模仿学习的主动导航

简介: Habitat Challenge 2022冠军方案:字节AI Lab提出融合传统和模仿学习的主动导航

在刚刚结束的国际机器人 Habitat 物体目标导航挑战赛 (Habitat  ObjectNav Challenge 2022) 上,字节跳动 AI Lab-Research 团队提交的方法 ByteBOT 获得冠军。该方法结合了基于地图的传统方法以及端到端的深度模仿学习方法,集两种方法优势于一体,达到了当前最好的结果。


物体目标导航 (Object Navigation) 是智能机器人的基本任务之一。在此任务中,智能机器人在一个未知的新环境中主动探索并找到人指定的某类物体。物体目标导航任务面向未来家庭服务机器人的应用需求,当人们需要机器人完成某些任务时,例如拿一杯水,机器人需要先寻找并移动到水杯的位置,进而帮人们取到水杯。


Habitat Challenge 挑战赛由 Meta AI 等机构联合举办,是物体目标导航领域的知名赛事之一,已连续举办4届, 此前夺冠队伍出自 CMU、UC Berkerly、Facebook 等知名机构。2022 年的最新一届比赛共有 54 支参赛队参加,字节跳动 AI Lab-Research 团队的研究者针对现有方法的不足,提出了一种全新的物体目标导航框架。该框架巧妙地将模仿学习与传统方法结合,在关键指标 SPL 中大幅度超过了其他参赛队伍的结果。


Test-Standard 榜单


Test-Challenge 榜单



研究动机


目前,物体目标导航方法可以大致分为两大类:端到端的方法;基于地图的方法。


  • 端到端的方法提取输入传感器数据的特征,再送入一个深度学习模型中得到 action,此类方法一般基于强化学习或模仿学习(如图1Map-less methods);
  • 基于地图的方法一般会构建显式或隐式地图,然后通过强化学习等方法在地图上选取一个目标点,最后规划路径并得到 action(如图1Map-based method)。


图1 端到端的方法 (上) 和基于地图的方法(下)流程示意图


在经过大量实验对比两类方法后,研究者们发现这两类方法各有优劣:端到端的方法不需要构建环境的地图,因此更加简洁,且不同场景的泛化能力更强。但由于网络需要学习编码环境的空间信息,依赖大量的训练数据,且难以同时学习一些简单的行为,比如在目标物体附近停下。而基于地图的方法使用栅格来存储特征或语义,具有显式空间信息,因此这类行为的学习门槛较低。但它非常依赖准确的定位结果,而且在一些如楼梯等环境中,需要人工设计感知和路径规划策略。


基于上述结论,字节跳动 AI Lab 的研究者们希望将两类方法的优势结合起来。然而这两类方法的算法流程差异很大,难以直接组合;此外也很难设计出一种策略直接融合两种方法的输出。因此研究者设计了一种简单但有效的策略,使两类方法根据机器人的状态交替进行主动探索和物体搜索,从而将各自的优势最大程度地发挥出来。


竞赛方法


算法主要有两个分支组成:基于概率地图的分支和端到端的分支。算法的输入是第一视角的 RGB-D 图像和机器人位姿,以及需要寻找的目标物体类别,输出是下一步动作 action。首先对 RGB 图像进行实例分割,并将其与其他原始输入数据一起传给两个分支。两个分支分别输出各自的 action,并由一个切换策略决定最终输出的 action。


图 2  算法流程示意图


基于概率地图的分支


基于概率地图的分支借鉴了 Semantic linking map[2] 的思想,并对作者原来发表在 IROS 机器人顶会的论文 [3] 方法进行了简化。该分支根据输入的实例分割结果、深度图和机器人位姿,一方面构建 2D 语义地图;另一方面基于预先学习的物体间关联概率,对一张概率地图进行更新。


概率地图的更新方式包括以下几种:当检测到目标物体但没有足够把握时(置信概率 confidence score 低于阈值),此时应该继续靠近观察,因此概率地图上相应区域的概率值应该提高(如图 3 上方所示);同理,如果检测到和目标物体有关联的物体(例如桌子和椅子放在一起的概率比较高),则相应区域的概率值也会提高(如图 3 下方所示)。算法通过选择概率最高的区域作为目标点,鼓励机器人靠近潜在目标物体以及关联物体进一步观察,直到找到置信概率高于阈值的目标物体。


图 3  概率地图更新方式示意图


端到端的分支


端到端分支的输入包括 RGB-D 图像、实例分割结果、机器人位姿,以及目标物体类别,并直接输出  action。端到端分支的主要作用是引导机器人像人类一样寻找物体,因此采用了 Habitat-Web[4] 方法的模型和训练流程。该方法基于模仿学习,通过在训练集中收集人类寻找物体的示例样本训练网络。


切换策略


切换策略主要根据概率地图和路径规划的结果,在概率地图分支和端到端分支输出的两个 action 中选择一个作为最终输出。当概率地图中没有概率大于阈值的栅格,机器人需要对环境进行探索;当地图上无法规划出可行路径时,此时机器人可能处于一些特殊环境(如楼梯),这两种情况下会采用端到端分支,使机器人具备足够的环境适应能力。其他情况则选择概率地图分支,充分发挥其在寻找目标物体方面的优势。


该切换策略的效果如视频所示,机器人一般情况下利用端到端分支高效地探索环境,一旦发现了可能的目标物体或关联物体,则切换到概率地图分支靠近观察,如果目标物体的置信概率大于阈值,则在目标物体处停下;否则该区域的概率值会不断降低,直到没有概率大于阈值的栅格,机器人重新切换回端到端继续探索。


,时长00:41

从视频中可以看出,这种方法兼具了端到端方法和基于地图的方法的优势。两个分支各司其职,端到端方法主要负责探索环境;概率地图分支负责靠近感兴趣区域进行观察。因此该方法不仅能够在复杂场景探索(如楼梯),还降低了端到端分支的训练要求。


总结


针对物体主动目标导航任务,字节跳动 AI Lab-Research 团队提出了一种结合经典概率地图与现代模仿学习的框架。该框架是对传统方法与端到端方法相结合的一次成功的尝试。在 Habitat 竞赛中,字节跳动 AI Lab-Research 团队提出的方法大幅度超出了第二名及其他参赛队伍的结果,证明了算法的先进性。通过将传统方法引入目前主流的 Embodied AI 端到端方法,来进一步弥补端到端方法的一些不足,从而使得智能机器人在帮助人、服务人的道路上更进一步。


参考文献


[1] Yadav, Karmesh, et al. "Habitat-Matterport 3D Semantics Dataset." arXiv preprint arXiv:2210.05633 (2022).

[2] Zeng, Zhen, Adrian Röfer, and Odest Chadwicke Jenkins. "Semantic linking maps for active visual object search." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

[3] Minzhao Zhu, Binglei Zhao, and Tao Kong. "Navigating to Objects in Unseen Environments by Distance Prediction." arXiv preprint arXiv:2202.03735 (2022).

[4] Ramrakhya, Ram, et al. "Habitat-Web: Learning Embodied Object-Search Strategies from Human Demonstrations at Scale." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
教育领域的AI进展:智能辅导与个性化学习的技术革新与挑战
随着人工智能技术的发展,AI Agent在教育领域的应用日益广泛,特别是在智能辅导与个性化学习方面展现出巨大潜力。通过自然语言处理、机器学习和数据分析等技术,AI可模拟个性化辅导员,根据学生的学习情况提供定制化资源与实时反馈。未来,AI Agent将更注重情感分析与跨学科培养,成为教师的有力助手,推动教育公平与效率提升。然而,数据隐私、个体差异及教育资源不平衡等问题仍需克服,以实现更智能化、全面化的教育生态。
175 10
教育领域的AI进展:智能辅导与个性化学习的技术革新与挑战
|
14天前
|
人工智能 边缘计算 搜索推荐
云计算与AI加速融合,中国信通院即将发布“2025云计算十大关键词”
2025可信云大会即将启幕,聚焦AI与云计算融合新趋势。大会将发布“2025云计算十大关键词”,涵盖超大规模智算、AI智能体、模型即服务、云计算出海等前沿方向,揭示未来技术航向,助力企业把握智能时代机遇。
129 3
|
28天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与电商API的融合:开启智能推荐与精准营销新时代
人工智能(AI)与电商API的深度融合,正推动电商行业迈入智能推荐与精准营销的新时代。通过智能推荐系统、个性化服务、业务流程自动化等应用,AI助力电商平台提升运营效率、优化用户体验,并驱动商业模式创新。然而,数据安全、模型偏差和技术迭代等挑战亟待解决。未来,随着算法优化、自动化深化及跨平台支持加强,AI与电商API将为行业带来更多智能化、个性化的解决方案,开启电商发展的新篇章。
|
9天前
|
人工智能 自然语言处理 搜索推荐
学霸养成计划:AI如何打造你的专属“学习外挂”?
学霸养成计划:AI如何打造你的专属“学习外挂”?
45 0
|
2月前
|
人工智能 自然语言处理 算法
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
184 0
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
|
3月前
|
人工智能 算法 数据可视化
机器人训练师狂喜!Infinite Mobility:上海AI Lab造物神器1秒生成可动家具,成本只要1分钱
上海AI Lab推出的Infinite Mobility采用程序化生成技术,可高效生成22类高质量可交互物体,单个生成仅需1秒且成本低至0.01元,已应用于机器人仿真训练等领域。
127 2
机器人训练师狂喜!Infinite Mobility:上海AI Lab造物神器1秒生成可动家具,成本只要1分钱
|
3月前
|
人工智能 自然语言处理 运维
让AI读懂K线图!ChatTS-14B:字节开源的时间序列理解和推理大模型,自然语言提问秒解趋势密码!
ChatTS-14B是字节跳动开源的时间序列专用大模型,基于Qwen2.5-14B微调优化,通过合成数据对齐技术显著提升分析能力,支持自然语言交互完成预测推理等复杂任务。
372 1
让AI读懂K线图!ChatTS-14B:字节开源的时间序列理解和推理大模型,自然语言提问秒解趋势密码!
|
3月前
|
人工智能 算法 API
多模态模型卷王诞生!InternVL3:上海AI Lab开源78B多模态大模型,支持图文视频全解析!
上海人工智能实验室开源的InternVL3系列多模态大语言模型,通过原生多模态预训练方法实现文本、图像、视频的统一处理,支持从1B到78B共7种参数规模。
460 6
多模态模型卷王诞生!InternVL3:上海AI Lab开源78B多模态大模型,支持图文视频全解析!
|
3月前
|
人工智能 自然语言处理 Rust
【内附榜单】评估AI大模型的代码修复能力!Multi-SWE-bench:字节开源代码修复能力评估基准,覆盖7大主流编程语言
Multi-SWE-bench是首个覆盖Python外7种主流编程语言的代码修复基准,包含1632个真实GitHub问题样本,通过严格筛选与人工验证确保数据质量。
138 0
【内附榜单】评估AI大模型的代码修复能力!Multi-SWE-bench:字节开源代码修复能力评估基准,覆盖7大主流编程语言
|
3月前
|
人工智能 监控 安全
使用 Ollama + FastAPI 打造轻量级 AI 应用部署方案
本文介绍了一套基于 Ollama 和 FastAPI 的轻量级 AI 模型部署方案,解决云端部署成本高、本地部署复杂的问题。通过 200 行核心代码实现模型加载到 API 服务的全流程,适用于中小型应用。方案结合 Ollama 的本地化运行能力和 FastAPI 的高性能特性,支持模型量化、并发控制和资源监控,提供 Docker 容器化及 K8s 扩展配置,优化性能与安全性。开发者可在 2 小时内完成环境搭建与部署,满足日均百万级请求需求,为 AI 应用快速落地提供有效支持。
285 0

热门文章

最新文章