m基于matlab的模糊控制器仿真实现,采用matlab编程方式定义模糊规则,隶属函数等

简介: m基于matlab的模糊控制器仿真实现,采用matlab编程方式定义模糊规则,隶属函数等

1.算法仿真效果
matlab2022a仿真结果如下:

e30a81e28b94e43df1dd32bd9887a404_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
432d1765b036160047e01a2b7c06d84a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3f2082585e493dae14a9b610fb1edb9f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4112bd7a9e96e949b3a6b861019920e1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   利用模糊数学的基本思想和理论的控制方法。在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键。系统动态的信息越详细,则越能达到精确控制的目的。
   然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。

模糊控制器包括四部分:
(1)模糊化。主要作用是选定模糊控制器的输入量,并将其转换为系统可识别的模糊量,具体包含以下三步:
第一,对输入量进行满足模糊控制需求的处理;
第二,对输入量进行尺度变换;
第三,确定各输入量的模糊语言取值和相应的隶属度函数。
(2)规则库。根据人类专家的经验建立模糊规则库。模糊规则库包含众多控制规则,是从实际控制经验过渡到模糊控制器的关键步骤。
(3)模糊推理。主要实现基于知识的推理决策。
(4)解模糊。主要作用是将推理得到的控制量转化为控制输出。

a2fa6c0eae9f81b67bad5c03ae86942f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

第一部分:控制存储器

这个部分比较简单,就是将当前时刻的数据进行保存,作为下一时刻的学习控制算法模块的输出的相加项,然后得到新输出。其对应的程序如下所示:

8605de39c9b3c709ac398c5cf4c9d438_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

第二部分:被控对象

控制对象,在matlab编程的时候,我们一般使用的是传递函数来标示,在参考文献中,关于控制对象的介绍似乎没有讲,一般这种情况,我们设置一个传递函数作为控制对象来研究我们的控制算法。

很多研究控制算法的课题,如果不知道控制对象具体的传递函数表达式,我们一般都设置一个传递函数作为控制对象进行控制算法的研究,如果你在自己的论文中已经设计了一个控制对象的传递函数,那么直接替换即可。

在本课题中,控制对象的传递函数我们设置为如下的表达式:

6bd63945fd84f377450234d29000cf56_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

第三部分:学习控制算法

这个部分是程序算法的重点,这里我们重点介绍 一下这个部分的实现过程。首先我们要做的是模糊PID控制器,论文中关于PID学习控制算法的主要表达式为:

56ce6cb8f26824fe34cac283b8590f79_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    然后这里控制器采用模糊PID控制器,然后迭代过程采用公式6.3来进行。注意,由于加入遗忘因子的话,在模糊PID中,收敛值收敛到0会变得非常的困难,故这里我们使用不带遗忘因子的公式。 


3.MATLAB核心程序

a=setfis(a,'DefuzzMethod','mom'); 
writefis(a,'fuzzpid'); 
a=readfis('fuzzpid'); 
%显示规则
showrule(a) 
 
%%
%控制对象的设置
%采样时间
ts        = 0.002;
%产生连续形式的传递函数
Gp        = tf([16],[10,1.2,6]);
%产生离散形式的传递函数
Gpz       = c2d(Gp,ts,'z');
%将传递函数转换为差分式子
[num,den] = tfdata(Gpz,'v');
 
%%
%控制算法初始参数
L         = 100;
fai       = 0.1;
F         = 50;
%此变量分别保存误差,误差积分以及误差导数
Err       = [0,0,0]';
%延迟变量
y_1       = 0;
y_2       = 0;
u_1       = 0;
u_2       = 0;
e_1       = 0; 
ei        = 0;
ed        = 0;
%%
%迭代过程
Time      = 1001; 
u         = zeros(1,Time);      
Pk        = L*ones(1,Time);   
Ik        = fai*ones(1,Time);   
Dk        = F*ones(1,Time);   
M         = 8;
Ed        = 0.0; 
Ecd       = 0.0; 
for i=0:1:M
    for k=1:1:Time
        %产生时间变量
        time(k) = (k-1)*ts;
        %给定轨迹输入
        yd(k)   = 8*sin(6*2*pi*k*ts);
        
        %根据模糊规则,进行PID参数的更新
        k_pid   = evalfis([Ed,Ecd],a); 
        Pk(k)   = L  + k_pid(1); 
        Ik(k)   = fai+ k_pid(2); 
        Dk(k)   = F  + k_pid(3); 
        %控制对象模型的输出
.......................................................................
        %使用延迟程序起到存储器的功能
        u2(k)   = u(k);
        e_1     = e(k);
        y_2     = y_1;
        y_1     = y(k);
        u_2     = u_1;
        u_1     = u2(k);
        Ed      = e(k);
        Ecd     = e(k)-e_1;
    end    
    i=i+1;
end 
相关文章
|
3天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
29 20
|
3天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
26 12
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
146 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
115 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章