性能最高提升 6.9 倍,字节跳动开源大模型训练框架 veGiantModel

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 性能最高提升 6.9 倍,字节跳动开源大模型训练框架 veGiantModel
字节跳动 AML 团队内部开发了火山引擎大模型训练框架 veGiantModel,比 Megatron 和 DeepSpeed 更快

背景

近些年,NLP 应用方面有所突破,Bert、GPT、GPT-3 等超大模型横扫各种 NLP 测试后,人们发现参数量越大的模型,在算法方面表现越好,于是纷纷开始迅速向大模型方向发展,模型体积爆炸式增长。而大模型训练给现有的训练系统带来的主要挑战为显存压力,计算压力和通信压力。

The size of language model is growing at an exponential rate (来源:https://huggingface.co/blog/large-language-models)

火山引擎大模型训练框架 veGiantModel

针对这个需求,字节跳动 AML 团队内部开发了火山引擎大模型训练框架 veGiantModel。基于 PyTorch 框架,veGiantModel 是以 Megatron 和 DeepSpeed 为基础的高性能大模型训练框架。其特点包括:

  • 同时支持数据并行、算子切分、流水线并行 3 种分布式并行策略,同时支持自动化和定制化的并行策略;
  • 基于 ByteCCL 高性能异步通讯库,训练任务吞吐相比其他开源框架有 1.2x-3.5x 的提升;
  • 提供了更友好、灵活的流水线支持,降低了模型开发迭代所需要的人力;
  • 可在 GPU上高效地支持数十亿至上千亿参数量的大模型;
  • 对带宽要求低,在私有化部署无 RDMA 强依赖。


其中,ByteCCL 为字节跳动自研的 BytePS 的升级版,针对 A100/V100 等各种机型拓扑做了分层规约优化,并支持了 allgather、alltoall 等更全面的通讯原语。

veGiantModel 性能表现

硬件配置

为了展示 VeGiantModel 的性能,veGiantModel 团队使用了自建机房的物理机,分别在 A100 和 V100 机型上做了测试,实验配置分别如下:

  • V100 测试:每个机器 8 张 Tesla V100 32G 型号 GPU,网络带宽 100G
  • A100 测试:每个机器 8 张 Ampere A100 40G 型号 GPU,网络带宽 800G

模型和对照组选择
veGiantModel 选择了 GPT-13B 模型进行评估,seq length 是 256, global batch size 是 1536。GPT 为目前市面上最为流行的 transformer based 语言模型。性能对照组选择了开源社区最流行的 Megatron 和 DeepSpeed。

测试结果

  • 模型:GPT-13B
  • Megatron:v2.4,tensor-model-parallel-size 设置为 4, pipeline-model-parallel-size 设置为 4
  • DeepSpeed:v0.4.2,使用 DeepSpeedExamples 开源社区中默认的 zero3 的配置
  • 运行环境
  • V100/TCP :100Gb/s TCP 网络带宽,4 机,每机 8 张 Tesla V100 32G  GPU
  • V100/RDMA:100Gb/s RDMA 网络带宽,4 机,每机 8 张 Tesla V100 32G  GPU
  • A100/TCP:800Gb/s TCP 网络带宽,4 机,每机 8 张 Tesla A100 40G  GPU
  • A100/RDMA:800Gb/s RDMA 网络带宽,4 机,每机 8 张 Tesla A100 40G  GPU
  • 统计值:Throughtput (samples/s)




从上述数据可以看出:

  1. veGiantModel 性能更优:无论是在高带宽还是低带宽的场下,veGiantModel 在 V100 和 A100 上均胜出 Megatron 和 DeepSpeed,最高可达 6.9 倍提升。
  2. veGiantModel 对网络带宽要求低:veGiantModel 在带宽变化对吞吐的影响相对最小 (<10%),而 DeepSpeed(ZeRO) 是对带宽要求最高的,最高可达将近 5 倍的差距。


原因解析

veGiantModel 为什么比 Megatron 和 DeepSpeed 更快?原因如下:

  • ByteCCL (BytePS) 高性能异步通讯库。
  • 支持定制化的并行策略,可以将性能优化推到极致。
  • 在支持数据并行、算子切分、流水线并行 3 种分布式并行策略时,veGiantModel 会综合考虑到跨机的带宽,自动调整 toplogy 的 placement。


传送门

veGiantModel 现已在 GitHub 上开源,地址如下:
https://github.com/volcengine/veGiantModel

GitHub 上详细介绍了如何使用 veGiantModel 以及如何使用 veGiantModel 快速跑起一个 GPT 的预训练。火山引擎机器学习平台原生支持了 veGiantModel,目前平台正在公测中,欢迎大家试用:https://www.volcengine.com/product/ml-platform

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
100 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
13天前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
38 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
2月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
191 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
83 8
|
3月前
|
机器学习/深度学习 缓存 监控
利用机器学习优化Web性能和用户体验
【10月更文挑战第16天】本文探讨了如何利用机器学习技术优化Web性能和用户体验。通过分析用户行为和性能数据,机器学习可以实现动态资源优化、预测性缓存、性能瓶颈检测和自适应用户体验。文章还介绍了实施步骤和实战技巧,帮助开发者更有效地提升Web应用的速度和用户满意度。
|
3月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
182 1
|
3月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
4月前
|
数据可视化 Swift
小钢炮进化,MiniCPM 3.0 开源!4B参数超GPT3.5性能,无限长文本,超强RAG三件套!模型推理、微调实战来啦!
旗舰端侧模型面壁「小钢炮」系列进化为全新 MiniCPM 3.0 基座模型,再次以小博大,以 4B 参数,带来超越 GPT-3.5 的性能。并且,量化后仅 2GB 内存,端侧友好。
小钢炮进化,MiniCPM 3.0 开源!4B参数超GPT3.5性能,无限长文本,超强RAG三件套!模型推理、微调实战来啦!
|
3月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
4月前
|
机器学习/深度学习 人工智能 算法
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
120 1

热门文章

最新文章

相关产品

  • 人工智能平台 PAI