编辑/凯霞随着先进工程计算、经济数据分析和云计算的快速发展,对超高速和高能效计算的需求呈指数级增长。现有的冯诺依曼架构下的传统电子信号处理器难以同时实现高速和低能耗。使用光子作为信息载体是一种很有前景的选择。由于传统材料的三阶非线性光学较弱,在传统冯诺依曼架构下构建集成光子计算芯片一直是一个挑战。近日,由北京大学物理学院龚旗煌研究团队提出了一种基于卷积神经网络(CNN)实现超快超低能耗全光计算芯片方案的新策略,支持多计算任务的执行。这项工作为下一代全光计算系统指明了方向。该研究以「All-optical computing based on convolutional neural networks」为题,于 11 月 25 日发表在《Opto-Electronic Advances》上。
电子向光子的转变
现有的计算仪器以电子处理器为主,以电子为信息载体,具有冯诺依曼架构,存储与处理物理分离。计算速度的扩展不仅受到内存和处理单元之间的数据传输的限制,还受到与集成电路相关的 RC 延迟的限制。此外,由于欧姆损耗导致的过度加热正在成为速度和功耗缩放的严重瓶颈。采用光子作为信息载体的全光计算提供了一种有前途的替代方法。当前,光计算通常依靠三阶非线性光学来实现全光控制。然而,超快的响应时间和巨大的非线性通常在光学材料中呈现出一种固有的权衡,因此较大的非线性敏感性通常只能以较慢的响应时间为代价来获得。这种权衡对构建遵循冯诺依曼架构的集成光子处理器提出了重大挑战,通常要求在单个芯片中进行各种光子器件的复杂异构集成。因此,为全光计算探索新的架构和非常规的计算方案势在必行。在这里,报告了一种实现超快、超低能耗全光计算的新策略,包括方程求解、基于 CNN 的多功能逻辑运算。研究人员表示:这是第一个在全光学芯片上实现物理固定的 CNN。
全光计算框架通用架构。
光学 CNN 由级联硅 Y 形波导和侧耦合硅波导段组成,以实现每个波导分支中的完整相位和幅度控制。这种概念和架构简单的设计独特地提供了超快的计算时间和低能耗。
全光计算性能
通用设备概念可用于方程求解、多功能逻辑运算以及许多其他数学运算。接下来,通过实验证明了包括超越方程求解器、各种逻辑门算子和半加器在内的多种计算功能,以验证全光计算性能。全光超越方程求解器方程是描述系统状态和过程的有效工具,求解方程可以告知所研究系统的状态并预测系统演化的轨迹。由于超越方程除少数情况外只能进行数值求解,因此超越方程的数值求解仍然是数学计算中的一个重要课题。该团队开发了一种求解器,它可以使用具有出色计算性能的光学 CNN 可预测地求解超越方程。
全光超越方程求解器。
测试结果表明,本文提出的超越方程求解器具有较高的求解精度,最大偏差小于 5%,多数情况下偏差小于 3%。这种偏差是由于输出波导数量有限和样品制作不完善造成的。因此,需要强调的是,理论上可以通过增加输出波导的数量来提高求解的精度。除了出色的求解精度外,全光学方程求解器还具有超快(通过特征结构的光的飞行时间为~1.3 ps)和能效计算(~92 fJ/bit)的特点。多种逻辑门运算符全光逻辑门构成了超高速全光芯片的基本构建块,任何复杂的光逻辑电路都可以由这些逻辑门组成。此外,逻辑运算为更复杂的光信号处理功能奠定了基础。然而,目前基于信号光线性相干或非线性相互作用的全光逻辑器件设计在实现高速、低功耗的可重构性和多功能操作(在单个芯片中实现多个逻辑功能)方面仍然面临挑战。研究人员利用网络的可扩展性来优化片上全光多种逻辑设备。该设计优化了 6 个输入端口,包括 2 个信号输入端和 4 个控制位,共 5 层。通过七种不同的 CNN 结构可以实现 16 种逻辑函数。选择其中一种光学 CNN 结构进行了说明。
多种逻辑门。
研究表明,可以实现低至 10.4 aJ/bit 的能耗,同时保持低错误率。此外,光学 CNN 的输出逻辑状态在执行多个逻辑功能时很容易区分。也就是说,未来更多的级联扩展可能仍然有效。半加器全光半加器可以执行将两个输入数据位相加并在全光实现中产生一个和位和一个进位位的计算任务。在这里,展示了一个基于其光学 CNN 平台的全光学半加器。
半加器。
通过算法优化确定了 12 个网络权重。逻辑状态 0 和 1 之间的平均光强对比度为 14.2 dB。飞行时间计算时间为 2.7 ps,能耗为 50.8 fJ/bit。进一步分析表明,可以实现低至 23.8 aJ/bit 的能耗,同时保持 10^-9 的低错误率。在实现高强度对比度的同时成功展示了半加器的功能,这进一步验证了 CNN 设计的高度可扩展性和广泛适用于各种全光处理功能。
超快和超低能耗
总之,研究人员通过实验证明了第一个基于硅波导的用于全光计算的物理固定 CNN。实现了设计以实现全光超越方程求解器、各种逻辑门算子和半加器,所有这些都表现出皮秒级超快运算和每比特数十飞焦量级的超低能耗。这种光网络架构易于扩展,有可能通过级联基本元素结构进一步扩展以执行其他复杂的计算任务。此外,该平台提供了使用波长复用进行并行计算的可能性。因此,该工作为下一代全光计算系统指明了一个有希望的方向。
论文链接:https://www.oejournal.org/article/doi/10.29026/oea.2021.200060
参考内容:https://phys.org/news/2021-11-all-optical-based-convolutional-neural-networks.html