【Pytorch神经网络实战案例】23 使用ImagNet的预训练模型识别图片内容

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。

815902569f6a467a99304f9ac1482386.png


1 案例基本工具概述


1.1 数据集简介


Imagenet数据集共有1000个类别,表明该数据集上的预训练模型最多可以输出1000种不同的分类结果。


  • Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。


  • Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。


  • Imagenet数据集有1400多万幅图片,涵盖2万多个类别,其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。


1.2 预训练模型


PyTorch中提供了许多在可以被直接加载到模型中并进行器的eNet数据集上训练好的模型,这些模型叫作预训练模型预测。


1.2.1 预训练模型简介


预训练模型都存放在PyTorch的torchvision库中。torchvision库是非常强大的PyTorch视觉处理库,包括分类、目标检测、语义分割等多种计算机视觉任务的预训练模型,还包括图片处理、锚点计算等很多基础工具。


1.2.2 预训练模型简介


a3e7a773ab26413a953b37e4a4e7bc4a.png


2 代码实战


2.1 案例概述


实例描述,将ImageNet数据集上的预训练模型ResNet18加抗到内存,并使用该模型对图片进行分类预测。


2.2 代码实现:下载并加载预训练模型-----ResNetModel.py(第1部分)


from PIL import Image
import matplotlib.pyplot as plt
import json
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import models,transforms # 引入torchvision库
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# 1.1 下载并加载预训练模型:引入基础库,并使用torchvision库中的API下载模型。
# Tip:本例使用的中文标签总类别为1001类,索引值为0的类为None,代表未知分类;英文标签总类注意别为1000类,没有None类。
#      因为PyTorch中的模型是在英文标签中训练的,所以在读取中文标签时,还需要将索引值加1
model = models.resnet18(pretrained=True) # True代表要下载模型 ,返回一个具有18层的ResNet模型
model = model.eval()


2.3 代码实现:加载标签并对输入数据进行预处理-----ResNetModel.py(第2部分)


# 1.2 加载标签并对输入数据进行预处理
labels_path = './models_2/code_01/imagenet_class_index.json' # 处理英文标签
with open(labels_path) as json_data:
    idx_to_labels = json.load(json_data)
def getone(onestr):
    return onestr.replace(',','')
with open('models_2/code_01/中文标签.csv','r+') as f:
    zh_labels = list(map(getone,list(f)))
    print(len(zh_labels),type(zh_labels),zh_labels[:5]) # 显示输出中文标签
transform = transforms.Compose(
    [
        transforms.Resize(256), # 将输入图像的尺寸修改为256×256
        transforms.CenterCrop(224), # 沿中心裁剪得224×224
        transforms.ToTensor(),
        transforms.Normalize(   # 图片归一化参数:对图片按照指定的均值与方差进行归一化处理,必须要与模型实际训练的预处理方式一样。
            mean=[0.485,0.456,0.406],
            std=[0.229,0.224,0.225]
        )
    ]
)


2.4 使用模型进行预测


2.4.1 代码操作概述


打开一个图片文件,并将其输入模型进行预测,同时输出预测结果。


2.4.2 代码实现:使用模型进行预测 -----ResNetModel.py(第3部分)


# 1.3 使用模型进行预测
# -------start-------- 将四通道中代表透明通道的维度A去掉,变为4通道的图片
def preimg(img): # 图片预处理函数:
    if img.mode == 'RGBA': # 实现兼容RGBA格式的图片信息
        ch = 4
        print('ch',ch)
        a = np.asarray(img)[:,:,:3]
        img = Image.fromarray(a)
    return img
im = preimg(Image.open('models_2/code_01/book.png')) # 载入图片
transforms_img = transform(im)  # 调整图片大小
inputimg = transforms_img.unsqueeze(0) # 增加批次维度
# -------end-------- 将四通道中代表透明通道的维度A去掉,变为4通道的图片
output = model(inputimg) # 输入模型
output = F.softmax(output,dim=1)  # 获取结果
# 从预测结果中取前3名
prediction_score , pred_label_idx = torch.topk(output,3)
prediction_score  = prediction_score.detach().numpy()[0] # 获取结果概率
pred_label_idx = pred_label_idx.detach().numpy()[0] # 获得结果ID
predicted_label = idx_to_labels[str(pred_label_idx[0])][1]#取出标签名称
predicted_label_zh = zh_labels[pred_label_idx[0] + 1 ] #取出中文标签名称
print(' 预测结果:', predicted_label,predicted_label_zh,'预测分数:', prediction_score[0])


2.5 预测结果可视化


2.5.1 可视化代码概述


将预测结果以图的方式显示出来。


2.5.2 代码实战:预测结果可视化-----ResNetModel.py(第4部分)


# 1.4 预测结果可视化
#可视化处理,创建一个1行2列的子图
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 8))
fig.sca(ax1)          #设置第一个轴是ax1
ax1.imshow(im)        #第一个子图显示原始要预测的图片
#设置第二个子图为预测的结果,按概率取前3名
barlist = ax2.bar(range(3), [i for i in prediction_score])
barlist[0].set_color('g')     #颜色设置为绿色
#预测结果前3名的柱状图
plt.sca(ax2)
plt.ylim([0, 1.1])
#竖直显示Top3的标签
plt.xticks(range(3), [idx_to_labels[str(i)][1][:15] for i in pred_label_idx ], rotation='vertical')
fig.subplots_adjust(bottom=0.2)   #调整第二个子图的位置
plt.show()              #显示图像


结果输出:


47919910c03342059609b527eb0d376f.png


3  代码总览ResNetModel.py


from PIL import Image
import matplotlib.pyplot as plt
import json
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import models,transforms # 引入torchvision库
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# 1.1 下载并加载预训练模型:引入基础库,并使用torchvision库中的API下载模型。
# Tip:本例使用的中文标签总类别为1001类,索引值为0的类为None,代表未知分类;英文标签总类注意别为1000类,没有None类。
#      因为PyTorch中的模型是在英文标签中训练的,所以在读取中文标签时,还需要将索引值加1
model = models.resnet18(pretrained=True) # True代表要下载模型 ,返回一个具有18层的ResNet模型
model = model.eval()
# 1.2 还在标签并对输入数据进行预处理
labels_path = './models_2/code_01/imagenet_class_index.json' # 处理英文标签
with open(labels_path) as json_data:
    idx_to_labels = json.load(json_data)
def getone(onestr):
    return onestr.replace(',','')
with open('models_2/code_01/中文标签.csv','r+') as f:
    zh_labels = list(map(getone,list(f)))
    print(len(zh_labels),type(zh_labels),zh_labels[:5]) # 显示输出中文标签
transform = transforms.Compose(
    [
        transforms.Resize(256), # 将输入图像的尺寸修改为256×256
        transforms.CenterCrop(224), # 沿中心裁剪得224×224
        transforms.ToTensor(),
        transforms.Normalize(   # 图片归一化参数:对图片按照指定的均值与方差进行归一化处理,必须要与模型实际训练的预处理方式一样。
            mean=[0.485,0.456,0.406],
            std=[0.229,0.224,0.225]
        )
    ]
)
# 1.3 使用模型进行预测
# -------start-------- 将四通道中代表透明通道的维度A去掉,变为4通道的图片
def preimg(img): # 图片预处理函数:
    if img.mode == 'RGBA': # 实现兼容RGBA格式的图片信息
        ch = 4
        print('ch',ch)
        a = np.asarray(img)[:,:,:3]
        img = Image.fromarray(a)
    return img
im = preimg(Image.open('models_2/code_01/book.png')) # 载入图片
transforms_img = transform(im)  # 调整图片大小
inputimg = transforms_img.unsqueeze(0) # 增加批次维度
# -------end-------- 将四通道中代表透明通道的维度A去掉,变为4通道的图片
output = model(inputimg) # 输入模型
output = F.softmax(output,dim=1)  # 获取结果
# 从预测结果中取前3名
prediction_score , pred_label_idx = torch.topk(output,3)
prediction_score  = prediction_score.detach().numpy()[0] # 获取结果概率
pred_label_idx = pred_label_idx.detach().numpy()[0] # 获得结果ID
predicted_label = idx_to_labels[str(pred_label_idx[0])][1]#取出标签名称
predicted_label_zh = zh_labels[pred_label_idx[0] + 1 ] #取出中文标签名称
print(' 预测结果:', predicted_label,predicted_label_zh,'预测分数:', prediction_score[0])
# 1.4 预测结果可视化
#可视化处理,创建一个1行2列的子图
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 8))
fig.sca(ax1)          #设置第一个轴是ax1
ax1.imshow(im)        #第一个子图显示原始要预测的图片
#设置第二个子图为预测的结果,按概率取前3名
barlist = ax2.bar(range(3), [i for i in prediction_score])
barlist[0].set_color('g')     #颜色设置为绿色
#预测结果前3名的柱状图
plt.sca(ax2)
plt.ylim([0, 1.1])
#竖直显示Top3的标签
plt.xticks(range(3), [idx_to_labels[str(i)][1][:15] for i in pred_label_idx ], rotation='vertical')
fig.subplots_adjust(bottom=0.2)   #调整第二个子图的位置
plt.show()              #显示图像


目录
相关文章
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
129 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
319 1
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
195 59
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
3月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
2月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
184 1
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
80 1
|
4月前
|
缓存
Flutter Image从网络加载图片刷新、强制重新渲染
Flutter Image从网络加载图片刷新、强制重新渲染
137 1

热门文章

最新文章