Mysql和ES数据同步方案汇总

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: Mysql和ES数据同步方案汇总

前言


在实际项目开发中,我们经常将Mysql作为业务数据库,ES作为查询数据库,用来实现读写分离,缓解Mysql数据库的查询压力,应对海量数据的复杂查询。这其中有一个很重要的问题,就是如何实现Mysql数据库和ES的数据同步,今天和大家聊聊Mysql和ES数据同步的各种方案。


一、Mysql和ES各自的特点


为什么选用Mysql


MySQL 在关系型数据库历史上并没有特别优势的位置,Oracle/DB2/PostgreSQL(Ingres) 三老比

MySQL 开发早了 20 来年, 但是乘着 2000 年的互联网东风, LAMP 架构得到迅速的使用,特别在中国,大部分新兴企业的 IT 系统主数据沉淀于 MySQL 中。


  • 核心特点:开源免费、高并发、稳定、支持事务、支持SQL查询


  • 高并发能力:MySQL 内核特征特别适合高并发简单 SQL 操作 ,链接轻量化(线程模式),优化器、执行器、事务引擎相对简单粗暴,存储引擎做得比较细致


  • 稳定性好:主数据库最大的要求就是稳定、不丢数据,MySQL 内核特征反倒让其特点鲜明,从而达到很好的稳定性,主备系统也很早就 ready ,应对崩溃情况下的快速切换,innodb 存储引擎也保障了 MySQL 下盘稳定


  • 操作便捷:良好、便捷的用户体验(相比 PostgreSQL) , 让应用开发者非常容易上手 ,学习成本较低


  • 开源生态:MySQL 是一款开源产品,让上下游厂商围绕其构建工具相对简单,HAproxy、分库分表中间件让其实用性大大加强,同时开源的特质让其有大量的用户


为什么选用 ES

ES 几个显著的特点,能够有效补足 MySQL 在企业级数据操作场景的缺陷,而这也是我们将其选择作为下游数据源重要原因


  • 核心特点:支持分词检索,多维筛选性能好,支持海量数据查询


  • 文本搜索能力:ES 是基于倒排索引实现的搜索系统,配合多样的分词器,在文本模糊匹配搜索上表现得比较好,业务场景广泛


  • 多维筛选性能好:亿级规模数据使用宽表预构建(消除 join),配合全字段索引,使 ES 在多维筛选能力上具备压倒性优势,而这个能力是诸如CRM, BOSS, MIS 等企业运营系统核心诉求,加上文本搜索能力,独此一家


  • 开源和商业并行:ES。开源生态非常活跃,具备大量的用户群体,同时其背后也有独立的商业公司支撑,而这让用户根据自身特点有了更加多样、渐进的选择


二、数据同步方案

1.同步双写

这是一种最为简单的方式,在将数据写到mysql时,同时将数据写到ES。

11.png

伪代码:

   /**
     * 新增商品
     */
    @Transactional(rollbackFor = Exception.class)
    public void addGoods(GoodsDto goodsDto) {
         //1、保存Mysql
         Goods goods = new Goods();
         BeanUtils.copyProperties(goodsDto,goods);
         GoodsMapper.insert();
         //2、保存ES
         IndexRequest indexRequest = new IndexRequest("goods_index","_doc");
         indexRequest.source(JSON.toJSONString(goods), XContentType.JSON);
         indexRequest.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE);
         highLevelClient.index(indexRequest);
    }

优点:

1、业务逻辑简单

2、实时性高


缺点:

1、 硬编码,有需要写入mysql的地方都需要添加写入ES的代码;

2、 业务强耦合;

3、 存在双写失败丢数据风险;

4、 性能较差:本来mysql的性能不是很高,再加一个ES,系统的性能必然会下降。


附:

上面说的双写失败风险,包括以下几种:

1) ES系统不可用;

2) 程序和ES之间的网络故障;

3) 程序重启,导致系统来不及写入ES等。

针对这种情况,有数据强一致性要求的,就必须双写放到事务中来处理,而一旦用上事物,则性能下降更加明显。


2.异步双写(MQ方式)

针对多数据源写入的场景,可以借助MQ实现异步的多源写入,这种情况下各个源的写入逻辑互不干扰,不会由于单个数据源写入异常或缓慢影响其他数据源的写入,虽然整体写入的吞吐量增大了,但是由于MQ消费是异步消费,所以不适合实时业务场景。

12.png

优点:

1、性能高

2、不易出现数据丢失问题,主要基于MQ消息的消费保障机制,比如ES宕机或者写入失败,还能重新消费MQ消息。

3、多源写入之间相互隔离,便于扩展更多的数据源写入


缺点:

1、硬编码问题,接入新的数据源需要实现新的消费者代码

3、系统复杂度增加:引入了消息中间件

4、可能出现延时问题:MQ是异步消费模型,用户写入的数据不一定可以马上看到,造成延时。


3.基于Mysql表定时扫描同步

上面两种方案中都存在硬编码问题,也就是有任何对mysq进行增删改查的地方要么植入ES代码,要么替换为MQ代码,代码的侵入性太强。


如果对实时性要求不高的情况下,可以考虑用定时器来处理,具体步骤如下:

1、数据库的相关表中增加一个字段为timestamp的字段,任何crud操作都会导致该字段的时间发生变化;

2、原来程序中的CURD操作不做任何变化;

3、增加一个定时器程序,让该程序按一定的时间周期扫描指定的表,把该时间段内发生变化的数据提取出来;

4、逐条写入到ES中。

如下图所示:

13.png

该方案的典型实现是借助logstash实现数据同步,其底层实现原理就是根据配置定期使用sql查询新增的数据写入ES中,实现数据的增量同步。


具体实现可以参考:通过Logstash实现mysql数据定时增量同步到ES

14.png

优点:

1、不改变原来代码,没有侵入性、没有硬编码;

2、没有业务强耦合,不改变原来程序的性能;

3、Worker代码编写简单不需要考虑增删改查;


缺点:

1、时效性较差,由于是采用定时器根据固定频率查询表来同步数据,尽管将同步周期设置到秒级,也还是会存在一定时间的延迟。

2、对数据库有一定的轮询压力,一种改进方法是将轮询放到压力不大的从库上。


4.基于Binlog实时同步


上面三种方案要么有代码侵入,要么有硬编码,要么有延迟,那么有没有一种方案既能保证数据同步的实时性又没有代入侵入呢?


当然有,可以利用mysql的binlog来进行同步。其实现原理如下:

15.png

具体步骤如下:

1) 读取mysql的binlog日志,获取指定表的日志信息;

2) 将读取的信息转为MQ;

3) 编写一个MQ消费程序;

4) 不断消费MQ,每消费完一条消息,将消息写入到ES中。


优点:

1、没有代码侵入、没有硬编码;

2、原有系统不需要任何变化,没有感知;

3、性能高;

4、业务解耦,不需要关注原来系统的业务逻辑。


缺点:

1、构建Binlog系统复杂;

2、如果采用MQ消费解析的binlog信息,也会像方案二一样存在MQ延时的风险。

业界目前较为流行的方案:使用canal监听binlog同步数据到es


canal ,译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费。

说白了就是,根据Mysql的binlog日志进行增量同步数据。要理解canal的原理,就要先了解mysql的主从复制原理:

1、所有的create update delete操作都会进入MySQLmaster节点

2、master节点会生成binlog文件,每次操作mysql数据库就会记录到binlog文件中

3、slave节点会订阅master节点的binlog文件,以增量备份的形式同步数据到slave数据


canal原理就是伪装成mysql的从节点,从而订阅master节点的binlog日志,主要流程为:

1、canal服务端向mysql的master节点传输dump协议

2、mysql的master节点接收到dump请求后推送binlog日志给canal服务端,解析binlog对象(原始为byte流)转成Json格式

3、canal客户端通过TCP协议或MQ形式监听canal服务端,同步数据到ES


三、数据迁移同步工具选型


数据迁移同步工具的选择比较多样,下表仅从 MySQL 同步 ES 这个场景下,对一些笔者深度使用研究过的数据同步工具进行对比,用户可以根据自己的实际需要选取适合自己的产品。

16.png17.png


总结

本文主要对Mysql和ES进行数据同步的常见方案进行了汇总说明。


  • 同步双写是最简单的同步方式,能最大程度保证数据同步写入的实时性,最大的问题是代码侵入性太强。


  • 异步双写引入了消息中间件,由于MQ都是异步消费模型,所以可能出现数据同步延迟的问题。好处是在大规模消息同步时吞吐量更、高性能更好,便于接入更多的数据源,且各个数据源数据消费写入相互隔离互不影响。


  • 基于Mysql表定时扫描同步 ,原理是通过定时器定时扫描表中的增量数据进行数据同步,不会产生代码侵入,但由于是定时扫描同步,所以也会存在数据同步延迟问题,典型实现是采用 Logstash 实现增量同步。


  • 基于Binlog实时同步 ,原理是通过监听Mysql的binlog日志进行增量同步数据。不会产生代码侵入,数据同步的实时也能得到保障,弊端是Binlog系统都较为复杂。典型实现是采用 canal 实现数据同步。
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
660
分享
相关文章
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
405 3
Mysql高可用架构方案
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
17 2
Aurora MySQL负载突增应对策略与优化方案
通过以上策略,企业可以有效应对 Aurora MySQL 的负载突增,确保数据库在高负载情况下依然保持高性能和稳定性。这些优化方案涵盖了从架构设计到具体配置和监控的各个方面,能够全面提升数据库的响应速度和处理能力。在实际应用中,应根据具体的业务需求和负载特征,灵活调整和应用这些优化策略。
57 22
MySQL 分库分表方案
本文总结了数据库分库分表的相关概念和实践,针对单张表数据量过大及增长迅速的问题,介绍了垂直和水平切分的方式及其适用场景。文章分析了分库分表后可能面临的事务支持、多库结果集合并、跨库join等问题,并列举了几种常见的开源分库分表中间件。最后强调了不建议水平分库分表的原因,帮助读者在规划时规避潜在问题。
205 20
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
MySQL中的模糊匹配技巧:无需ES的高效实现
在数据库应用中,模糊匹配是一个常见的需求,尤其在处理搜索功能时。虽然Elasticsearch(ES)等搜索引擎在处理文本搜索方面表现出色,但在一些场景下,直接使用MySQL数据库实现模糊匹配也是一个经济且高效的选择。本文将分享如何在不引入ES的情况下,利用MySQL实现模糊匹配的五大步骤和十个实战案例。
331 1
MySQL模糊匹配技巧:无需ES的高效实现
在数据库应用中,模糊匹配是一个常见的需求,尤其是在不引入Elasticsearch(ES)等外部搜索引擎的情况下。MySQL作为强大的关系型数据库,提供了多种实现模糊匹配的方法。本文将分享如何在MySQL中实现模糊匹配,并提供五大步骤和十个实战案例,帮助你提升查询效率和性能。
563 1
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
117 5
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
84 1
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等