基于PSO优化BP神经网络PID控制器matlab仿真

简介: 基于PSO优化BP神经网络PID控制器matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
af7333d8445c98d4c9d9d990012d1bb6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b2869e4c42b21ac44b83300542e7c1a2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
79c7bdc8639bceb504bd77b654ea3214_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
579f173300c3660612737f939b82ba05_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   PID控制器(比例-积分-微分控制器),由比例单元 P、积分单元 I 和微分单元 D 组成。通过Kp, Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。

8bb1c16b840faa3cc5c1fc068c23fc25_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    PID 控制器的方块图PID 控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。 

   具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为:

image.png

   由此可见,当利用PID控制器进行串联校正时,除可使系统的型别提高一级外,还将提供两个负实零点。与PI控制器相比,PID控制器除了同样具有提高系统的稳态性能的优点外,还多提供一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。因此,在工业过程控制系统中,广泛使用PID控制器。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使积分部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使微分部分发生在系统频率特性的中频段,以改善系统的动态性能。 

   但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学习能力在线实时调整PID控制参数,提升系统稳定性,针对BP-PID自学习过程中容易陷入局部极小值问题,利用改进的PSO算法对其进行优化,确保BP-PID系统收敛于全局最优解。基于仿真数据开展实验,结果表明,所提方法能够有效提升系统的控制精度和控制稳定度。 

    PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。(2)由于缺乏精密搜索方法的配合,PSO算法往往不能得到精确的结果。造成这种问题的原因是PSO算法并没有很充分地利用计算过程中获得的信息,在每一步迭代中,仅仅利用了群体最优和个体最优的信息。(3)PSO算法虽然提供了全局搜索的可能,但是并不能保证收敛到全局最优点上。(4)PSO算法是一种启发式的仿生优化算法,当前还没有严格的理论基础,仅仅是通过对某种群体搜索现象的简化模拟而设计的,但并没有从原理上说明这种算法为什么有效,以及它适用的范围。因此,PSO算法一般适用于一类高维的、存在多个局部极值点而并不需要得到很高精度解的优化问题。
    当前针对PSO算法开展的研究工作种类繁多,经归纳整理分为如下八个大类:(1)对PSO算法进行理论分析,试图理解其工作机理;(2)改变PSO算法的结构,试图获得性能更好的算法;(3)研究各种参数配置对PSO算法的影响;(4)研究各种拓扑结构对PSO算法的影响;(5)研究离散版本的PSO算法;(6)研究PSO算法的并行算法;(7)利用PSO算法对多种情况下的优化问题进行求解;(8)将PSO算法应用到各个不同的工程领域。以下从这八大类别着手,对PSO算法的研究现状作一梳理。由于文献太多,无法面面俱到,仅捡有代表性的加以综述。

   PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值(pbest和gbest)”来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

3e6abd99329602427bd430e862995a58_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

    
    net2=xi*(wi');
     
    for j=1:1:H
        Oh(j)=( exp( net2(j)-exp(-net2(j)) ) )/(exp( net2(j)+exp(-net2(j)) ));
    end
   
    net3=wo*Oh;
      
    for l=1:1:Out
        K(l)=exp(net3(l))/(exp(net3(l))+exp(-net3(l)));
    end
    kp(k)=M(1)*K(1); ki(k)=M(2)*K(2); kd(k)=M(3)*K(3);
    Kpid=[kp(k),ki(k),kd(k)];
    du(k)=Kpid*epid;
    u(k)=u_1+du(k); 
    if u(k)>10
        u(k)=10;
    end
    if u(k)<-10
        u(k)=-10;
    end
    
    %%%后向传播------------------------------------------------
    dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001));
    for j=1:1:Out
            dK(j)=1/(exp(net3(j))+exp(-net3(j)));
           %dK(j)=M;
    end
      
    for l=1:1:Out
        delta3(l)=error(k)*dyu(k)*epid(l)*dK(l);
    end
    for l=1:1:Out
        for i=1:1:H
            d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);
        end
    end
      
    wo=wo_1+d_wo+alfa*(wo_1-wo_2);
    
    for i=1:1:H
        dO(i)=4/(exp(net2(i))+exp(-net2(i)))^2;
    end
    segma=delta3*wo;
    for i=1:1:H
        delta2(i)=dO(i)*segma(i);
    end
    d_wi=xite*delta2'*xi;
      
    wi=wi_1+d_wi+alfa*(wi_1-wi_2);
      
    wo_2=wo_1; wo_1=wo;
    wi_2=wi_1; wi_1=wi;
    du_1=du(k);
    
    u_7=u_6;u_6=u_5;u_5=u_4; u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);   
    y_2=y_1; y_1=yout(k); 
    error_2=error_1; error_1=error(k);
 
end
相关文章
|
20小时前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
19小时前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
29天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
53 18
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
110 10
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
63 10
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
72 10

热门文章

最新文章