基于PSO优化BP神经网络PID控制器matlab仿真

简介: 基于PSO优化BP神经网络PID控制器matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
af7333d8445c98d4c9d9d990012d1bb6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b2869e4c42b21ac44b83300542e7c1a2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
79c7bdc8639bceb504bd77b654ea3214_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
579f173300c3660612737f939b82ba05_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   PID控制器(比例-积分-微分控制器),由比例单元 P、积分单元 I 和微分单元 D 组成。通过Kp, Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。

8bb1c16b840faa3cc5c1fc068c23fc25_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    PID 控制器的方块图PID 控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。 

   具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为:

image.png

   由此可见,当利用PID控制器进行串联校正时,除可使系统的型别提高一级外,还将提供两个负实零点。与PI控制器相比,PID控制器除了同样具有提高系统的稳态性能的优点外,还多提供一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。因此,在工业过程控制系统中,广泛使用PID控制器。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使积分部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使微分部分发生在系统频率特性的中频段,以改善系统的动态性能。 

   但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学习能力在线实时调整PID控制参数,提升系统稳定性,针对BP-PID自学习过程中容易陷入局部极小值问题,利用改进的PSO算法对其进行优化,确保BP-PID系统收敛于全局最优解。基于仿真数据开展实验,结果表明,所提方法能够有效提升系统的控制精度和控制稳定度。 

    PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。(2)由于缺乏精密搜索方法的配合,PSO算法往往不能得到精确的结果。造成这种问题的原因是PSO算法并没有很充分地利用计算过程中获得的信息,在每一步迭代中,仅仅利用了群体最优和个体最优的信息。(3)PSO算法虽然提供了全局搜索的可能,但是并不能保证收敛到全局最优点上。(4)PSO算法是一种启发式的仿生优化算法,当前还没有严格的理论基础,仅仅是通过对某种群体搜索现象的简化模拟而设计的,但并没有从原理上说明这种算法为什么有效,以及它适用的范围。因此,PSO算法一般适用于一类高维的、存在多个局部极值点而并不需要得到很高精度解的优化问题。
    当前针对PSO算法开展的研究工作种类繁多,经归纳整理分为如下八个大类:(1)对PSO算法进行理论分析,试图理解其工作机理;(2)改变PSO算法的结构,试图获得性能更好的算法;(3)研究各种参数配置对PSO算法的影响;(4)研究各种拓扑结构对PSO算法的影响;(5)研究离散版本的PSO算法;(6)研究PSO算法的并行算法;(7)利用PSO算法对多种情况下的优化问题进行求解;(8)将PSO算法应用到各个不同的工程领域。以下从这八大类别着手,对PSO算法的研究现状作一梳理。由于文献太多,无法面面俱到,仅捡有代表性的加以综述。

   PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值(pbest和gbest)”来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

3e6abd99329602427bd430e862995a58_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

    
    net2=xi*(wi');
     
    for j=1:1:H
        Oh(j)=( exp( net2(j)-exp(-net2(j)) ) )/(exp( net2(j)+exp(-net2(j)) ));
    end
   
    net3=wo*Oh;
      
    for l=1:1:Out
        K(l)=exp(net3(l))/(exp(net3(l))+exp(-net3(l)));
    end
    kp(k)=M(1)*K(1); ki(k)=M(2)*K(2); kd(k)=M(3)*K(3);
    Kpid=[kp(k),ki(k),kd(k)];
    du(k)=Kpid*epid;
    u(k)=u_1+du(k); 
    if u(k)>10
        u(k)=10;
    end
    if u(k)<-10
        u(k)=-10;
    end
    
    %%%后向传播------------------------------------------------
    dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001));
    for j=1:1:Out
            dK(j)=1/(exp(net3(j))+exp(-net3(j)));
           %dK(j)=M;
    end
      
    for l=1:1:Out
        delta3(l)=error(k)*dyu(k)*epid(l)*dK(l);
    end
    for l=1:1:Out
        for i=1:1:H
            d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);
        end
    end
      
    wo=wo_1+d_wo+alfa*(wo_1-wo_2);
    
    for i=1:1:H
        dO(i)=4/(exp(net2(i))+exp(-net2(i)))^2;
    end
    segma=delta3*wo;
    for i=1:1:H
        delta2(i)=dO(i)*segma(i);
    end
    d_wi=xite*delta2'*xi;
      
    wi=wi_1+d_wi+alfa*(wi_1-wi_2);
      
    wo_2=wo_1; wo_1=wo;
    wi_2=wi_1; wi_1=wi;
    du_1=du(k);
    
    u_7=u_6;u_6=u_5;u_5=u_4; u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);   
    y_2=y_1; y_1=yout(k); 
    error_2=error_1; error_1=error(k);
 
end
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80
|
11天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
34 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
17天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
100 15
|
24天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
52 8
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。