m基于EAN13字符编码规则的一维条形码条码宽度计算和数字译码matlab仿真

简介: m基于EAN13字符编码规则的一维条形码条码宽度计算和数字译码matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

98350897b7344184edf0b77f2eb861b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
afff2d21d24ceb964bd6c2c934db3765_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   条码技术是在计算机的应用实践中产生和发展起来的一种自动识别技术,条码应用技术就是应用条码系统进行的信息处理技术。条码技术的研究始于20世纪中期,是继计算机技术应用和发展应运而生的。随着70年代微处理器的问世,标志着“信息化社会”的到来,它要求人们对社会上各个领域的信息、数据实施正确、有效、及时的采集、传递和管理。因此如何代替人的视觉、人的手工操作、或者在复杂的环境中正确、迅速地获取信息并加以识别,成为人们普遍关心和有关人员精心研究的课题。通俗的说条形码是指在浅色衬底上印有深色矩形的线条(也称条码)排列而成的编码,其码条和空白条的数量和宽度按一定的规则(标准)排列。条形码是由一组规则排列的条、空、相应的数字组成。这种用条、空组成的数据编码可以供机器识读,而且很容易译成二进制数和十进制数。这些条和空可以有各种不同的组合方法,构成不同的图形符号,即各种符号体系,适用于不同的应用场合。条码系统是由条码符号设计、制作及扫描阅读组成的自动识别系统。微电子技术和激光技术的发展使得条码识别系统越来越受到人们的关注。条码是迄今为止最经济、实用的一种自动识别技术。

2.1一维条码概述

   条码可分为一维条码 (One Dimensional Barcode, 1D) 和二维码(Two Dimensional Code, 2D)两大类,目前在商品上的应用仍以一维条码为主,故一维条码又被称为商品条码,二维码则是另一种渐受重视的条码,其功能较一维条码强,应用范围更加广泛。通常一个完整的条码是由两侧空白区、起始字符、数据字符、校验字符、终止字符组成,以一维条码而言,其排列方式通常如表1所示:

2a178a55ca26c78b3831aee5d5c09b49_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

1、空白区

   位于条码两侧无任何符号及资讯的白色区域,主要用来提示扫瞄器准备扫瞄。

2、起始字符

   指条码符号的第一位字码,用来标识一个条码符号的开始,扫瞄器确认此字码存在后开始处理扫瞄脉冲。

3、数据字符

   位于起始字符后面的字码,用来标识一个条码符号的具体数值,允许双向扫瞄。

4、校验字符

   用来判定此次阅读是否有效的字码,通常是一种算术运算的结果,扫瞄器读入条码进行解码时,先对读入各字码进行运算,如运算结果与检查码相同,则判定此次阅读有效。

2.2EAN-13码符号的特征
(1)条码符号的整体形状为矩形。由一系列互相平行的条和空组成,四周都留有空白区。

(2)条空分别由1-4个同一宽度的的深或浅颜色的模块组成。深色模块用“1”表示,浅色模块用“0”表示。

(3)在条码符号中,表示数字的每个条码字符仅由两个条和两个空组成,共7个模块。

(4)除了表示数字的条码字符外,还有一些辅助条码字符,用作表示起始、终止的分界符和平分条码符号的中间分隔符。

(5)条码符号可设计成既可供固定式扫描器全向扫描,又可用手持扫描设备识读的形式。

(6)条码符号的大小可在放大系数的两个极限值所决定的尺寸之间变化,以适应不同印刷工艺的需求及用户对印刷面积的要求。

(7)对一个特定大小的条码符号所规定的尺寸称为名义尺寸,放大系数的范围0.8-2.0。

(8)供人识别的字符规定采用OCR-B字符。

2.3EAN-13码符号的特征

    EAN-13条码的一个字符。条、空宽度的定义如下:图中C1、C2、C3、C4表示每个字符中四个相邻条、空的宽度,T表示一个字符的宽度。

f79415ae9b89332c36f777f767f2e254_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

设一个字符中单位模块的宽度为n,则单位模块的宽度:

n=T/7

T=C1+C2+C3+C4

由于条码条、空宽度C1、C2、C3、C4已知,设条码条、空分别占单位模块的个数为mi,则:

mi=ci/n(其中i取1、2、3、4)

因此,由mi可知道条码的编码。例如:

(1)若m1=2、m2=2、m3=2、m4=1;

条码的排列为条-空-条-空,

则可知条码编码为1100110,是右侧偶性字符1;

(2)若m1=1、m2=2、m3=1、m4=3;

条码的排列为空-条-空-条,

则可知条码编码为0110111,是右侧奇性字符8。

3.MATLAB核心程序

if size(bar_image,3) == 3
bar_image       = rgb2gray(bar_image);
else
bar_image       = bar_image;    
end
subplot(222);imshow(bar_image/0.5);title('原始图像的灰度图');
%添加噪声
bar_image_noise = imnoise(bar_image,'salt & pepper',noise_level);
subplot(223);imshow(bar_image_noise/0.5);title('加入噪声后的图像');
%进行中值滤波
bar_image_filter= medfilt2(bar_image_noise,[filter_area filter_area]);
subplot(224);imshow(bar_image_filter/0.5);title('滤波之后的图像');
 
 
 
%% 参数初始化
%% 参数初始化
%% 参数初始化
%二值化参数
level = 0.8;
%左边和右边数据编码
codes = [3211,2221,2122,1411,1132,1231,1114,1312,1213,3112;    
         1123,1222,2212,1141,2311,1321,4111,2131,3121,2113];
%第一位数据编码     
first_codes = [31,20,18,17,12,6,3,10,9,5];   
%求灰度图的大小
[height,width]      = size(bar_image_filter); 
%二值化参数
bar_image_filter_10 = im2bw(bar_image_filter,level);
 
 
%% 条码检测
%% 条码检测
%% 条码检测
 
%检测59根条形码
l = 0;   
for i=1:height
    k = 1;
    l = l+1;
    
    for j=1:width-1
        %比较同一行相邻两点的颜色是否一致
        if bar_image_filter_10(i,j)>bar_image_filter_10(i,j+1) | bar_image_filter_10(i,j)< bar_image_filter_10(i,j+1)  
            Y_position(l,k) = j; %记录坐标
            k = k+1;        
        end
        if k>61 
            l = l-1;
            break
        end
    end
    
    if k<61
        l = l-1;
    end
end
 
 
[height,width] = size(Y_position);
 
if height<=1 
    disp('无效的条形码');
else
    %条形码的宽度
    bar_width = func_Tiaox_width(Y_position,height,width);
    %条形码的宽度
    [bar_sum2,Left_bar_number,Right_bar_number]=func_eachwidth(bar_width,height);
 
    bar_number      = '';
    bar_fist_number = 0;
    first           = 2;
    %左边编码查出条形码编码
.......................................................................
end
相关文章
|
5天前
|
算法 数据可视化 图形学
网络通信系统的voronoi图显示与能耗分析matlab仿真
在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ&gt;0增强集成效果,提高预测准确性和系统稳健性。
|
7天前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
8天前
|
传感器 算法
基于LEACH路由协议的网络性能matlab仿真,包括数据量,能耗,存活节点
- **LEACH协议**在WSN中通过分簇减少能耗,普通节点向最近簇头发送数据,簇头融合后发送给基站。本项目研究LEACH在不同初始能量、数据包及控制包长度条件下的网络性能,如剩余节点、能量、接收数据量和累计接收量。
|
8天前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
8天前
|
算法
基于PID-bang-bang控制算法的卫星姿态控制matlab仿真
该文主要介绍了一个基于PID-bang-bang控制算法的卫星姿态控制系统。在MATLAB2022a中进行了仿真,生成了控制收敛曲线和姿态调整动画。系统通过PID控制器减少误差,结合Bang-Bang控制实现快速响应。核心程序涉及卫星位置、推力向量的计算及动画绘制。PID控制器利用比例、积分、微分项调整输出,Bang-Bang控制则在误差超出阈值时提供即时修正。两者结合以平衡控制精度和响应速度,适应卫星姿态的精确调节需求。
|
9天前
|
传感器 算法
基于无线传感器网络的LC-DANSE波束形成算法matlab仿真
摘要: 此MATLAB程序对比了LC-DANSE与LCMV波束形成算法在无线传感器网络中的性能,基于SNR和MSE指标。测试在MATLAB 2022a环境下进行。核心代码涉及权重更新迭代,用于调整传感器节点权重以增强目标信号。LC-DANSE是分布式自适应算法,关注多约束条件下的噪声抑制;LCMV则是经典集中式算法,侧重单个期望信号方向。两者在不同场景下各有优势。程序结果显示SNR和MSE随迭代变化趋势,并保存结果数据。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)