m通过手动提取图像特征点实现医学图像配准和拼接matlab仿真

简介: m通过手动提取图像特征点实现医学图像配准和拼接matlab仿真

1.算法描述

   图像配准(image registration)是对同一场景在不同条件下得到的两幅或多幅图像进行对准、叠加的过程。同一场景的多幅图像会在分辨率、成像模式、灰度属性、位置(平移和旋转)、比例尺度、非线性变形及曝光时间等方面存在很多差异。概括来说,图像配准问题是以在变换空间中寻找一种特定的最优变换,达到使两幅或多幅图像在某种意义上的匹配为目的。  详细论述了这两种常用方法的特点及应用领域,并将基于特征的图像配准方法作为本文的研究重点。基于特征的图像配准方法是目前图像配准最常用的方法之一,特征提取的准确程度和定位的精确程度将对整个配准过程产生很大的影响。本文通过对现有的特征提取方法进行分析,完成图像配准。仿真结果表明该方法在保持配准精度的同时,能够稳定并快速地实现具有平移和旋转的图像的配准问题。最后,本文讨论了图像配准的一个重要应用领域―医学图像拼接。通过实验证明,本文提出的方法满足图像处理过程的实时性和准确性。

    医学图像配准和医学图像融合有着密切的关系,特别是对多模态图像而言,配准和融合是密不可分的。待融合的图像往往来自于不同的成像设备,它们的成像方位、角度和分辨率等因子都是不同的,所以这些图像中相应组织的位置、大小等都有差异,若事先不对融合图像进行空间上的对准,那么融合后的图像豪无意义。因此,图像配准是图像融合的先决条件,必须先进行配准变换,才能实现准确地融合。

    医学图像配准是医学图像处理的一项基本任务,它可以把来自不同模态或不同时间的多幅图像进行配准,然后为图像的后处理提供保证。如在医学图像融合中,需要将相对应的组织结构融合在一起,而待融合的图像往往来自于不同的成像设备,它们的成像方位、角度和分辨率等因子都是不同的,所以这些图像中相应组织的位置、大小等都有差异,必须先进行配准变换,才能实现准确地融合。医学图像配准的定义:同一个人从不同角度、不同位置拍摄的两张照片,由于拍摄条件不同,每张照片只反映某些方面的特征。要将这两张照片一起分析,就要将其中一张中的人像做移动和旋转,使它与另一幅对齐。这一对齐过程就是配准过程。保持不动的图像叫做参考图像,做变换的图像称为浮动图像。将配准后的图像进行融合就可以得到反映人的全貌的融合图像。医学图像配准就是寻求两幅图像间的几何变换关系,通过这一几何变换,使其中一幅医学图像(浮动图像F)与另外一幅医学图像(参考图像R)上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上具有相同的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。

3e093b862d9238a87e56faa6faab7b08_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   其中h表示二维空间坐标变换,g表示灰度或辐射变换,描述因传感器类型的不同或辐射变形所引入的图像变换。配准的目的就是要找出最佳的空间和几何变换参数。通常意义的配准只关心图像位置坐标的变换,灰度或辐射变换则可以归为图像预处理部分。各种图像配准技术都需要建立自己的变换模型,变换空间的选取与图像的变形特性有关,图像的几何变换可分成全局、局部两类,全局变换对整幅图像都有效,通常涉及矩阵代数,典型的变换运算有平移、旋转和缩放;局部变换有时又称为弹性映射,它允许变换参数存在对空间的依赖性。 

   基于图像特征的方法是图像配准中最常见的方法,对于不同特性的图像,选择图像中容易提取并且能够在一定程度上代表待配准图像相似性的特征作为配准依据。基于特征的方法在图像配准方法中具有最强的适应性,而根据特征选择和特征匹配方法的不同所衍生出的具体配准方法也是最多种多样的。基于特征的方法作图像配准一般分为三个步骤:

(1)特征提取:根据图像性质提取适用于该图像配准的几何或灰度特征。

(2)特征匹配:根据特征匹配准则,寻找两幅待配准图像中对应的的特征,排除没有对应的特征。

(3)图像转换:根据所求得的图像转换参数,将其带入符合图像形变性质的图像转换式以最终配准两幅图像。

    在常用的图像特征信息中,点特征是最常用到的。最简单的配准方法即人工选取图像上一系列同名控制点对,带入多项式以得到图像的转换参数。人工选点的方法具有错误率低,灵活性高,适应性好的特点,但在大量数据处理的应用中要耗费巨大的人力。一般的自动点匹配算法利用图像的固有性质如角点、边缘、形状、封闭区域的重心等获得控制点,而同名控制点间的对应方法包括聚类法、松弛法、Hausdorff距离等。对这类点特征的配准方法,同名控制点匹配是其中的难点,以上方法对控制点的性质都有较苛刻的要求,因而应用范围也受到一定程度的限制。

2.仿真效果预览
matlab2022a仿真结果如下:

0aa44f72ccbce4b4dab41d757fa715a5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7651abdcca512e597dff95f5b57a266c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

image2 = double(imread('b.jpg'));[h2 w2 d2] = size(image2);
point_number=2;
% 图片显示
figure; subplot(1,2,1); image(image1/255); axis image; hold on;
[X1 Y1] = ginput2(point_number); %手动获得特征点
subplot(1,2,2); image(image2/255); axis image; hold on;
[X2 Y2] = ginput2(point_number); %手动获得特征点
 
%参数估计
Z  = [ X2'  Y2' ; Y2' -X2' ; 1 1 0 0  ; 0 0 1 1 ]';     
xp = [ X1 ; Y1 ];
t  = Z \ xp; 
a  = t(1); 
b  = t(2); 
tx = t(3);
ty = t(4);
T = [a b tx ; -b a ty ; 0 0 1];
%计算大小
cp = T*[ 1 1 w2 w2 ; 1 h2 1 h2 ; 1 1 1 1 ]; 
Xpr = min( [ cp(1,:) 0 ] ) : max( [cp(1,:) w1] );
Ypr = min( [ cp(2,:) 0 ] ) : max( [cp(2,:) h1] );
[Xp,Yp] = ndgrid(Xpr,Ypr);
[wp hp] = size(Xp); 
%变化
X = T \ [ Xp(:) Yp(:) ones(wp*hp,1) ]'; 
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
104 80
|
1天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
21 5
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章