【蝴蝶算法】基于随机惯性权重策略+最优邻域扰动策略+动态转换概率策略的蝴蝶算法求解单目标优化问题附matlab代码IBOA

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【蝴蝶算法】基于随机惯性权重策略+最优邻域扰动策略+动态转换概率策略的蝴蝶算法求解单目标优化问题附matlab代码IBOA

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

蝴蝶优化算法是近年来提出的一种新型自然启发式算法.针对基本蝴蝶优化算法收敛速度慢,求解精度低,稳定性差等问题,提出了一种融合变异策略的自适应蝴蝶优化算法.通过引入随机惯性权重策略,利用迭代次数和个体适应度的优邻域扰动策略调整转换概率,有效维持了算法全局探索与局部搜索的平衡;通过动态转换概率策略,利用惯性权重值和混沌记忆权重因子进一步提高了算法的多样性,有效避免算法早熟收敛,同时加快了算法的收敛速度和求解精度.利用改进算法对12个基准测试函数进行仿真实验,与基本蝴蝶优化算法对比表明,改进算法具有收敛速度快,寻优精度高,稳定性强等优异性能.

⛄ 部分代码

function [fmin,best_pos,Convergence_curve]=BOA(n,N_iter,Lb,Ub,dim,fobj)


p=0.8; % probabibility switch,开关概率

power_exponent=0.1; % 幂指数

sensory_modality=0.01; % 感觉因子


%Initialize the positions of search agents

Sol=initialization(n,dim,Ub,Lb);


for i=1:n

   Fitness(i)=fobj(Sol(i,:));

end


% Find the current best_pos

[fmin,I]=min(Fitness);

best_pos=Sol(I,:);

S=Sol;


% Start the iterations -- Butterfly Optimization Algorithm

for t=1:N_iter

 

       for i=1:n% Loop over all butterflies/solutions

       

         %Calculate fragrance of each butterfly which is correlated with objective function,计算与目标函数相关的每只蝴蝶的香味

         Fnew=fobj(S(i,:));

         FP=(sensory_modality*(Fnew^power_exponent)); % 每只蝴蝶的香味

   

         %Global or local search

         if rand<p

             dis = rand * rand * best_pos - Sol(i,:);        % 全局搜索阶段

             S(i,:)=Sol(i,:)+dis*FP;

         else

             % Find random butterflies in the neighbourhood

             epsilon=rand;

             JK=randperm(n);

             dis=epsilon*epsilon*Sol(JK(1),:)-Sol(JK(2),:);  % 局部搜索阶段

             S(i,:)=Sol(i,:)+dis*FP;                        

         end

         

           % Check if the simple limits/bounds are OK

           S(i,:)=simplebounds(S(i,:),Lb,Ub);

         

           % Evaluate new solutions

           Fnew=fobj(S(i,:));  %Fnew represents new fitness values

           

           % If fitness improves (better solutions found), update then

           if (Fnew<=Fitness(i))

               Sol(i,:)=S(i,:);

               Fitness(i)=Fnew;

           end

         

          % Update the current global best_pos

          if Fnew<=fmin

               best_pos=S(i,:);

               fmin=Fnew;

          end

        end

           

        Convergence_curve(t,1)=fmin;

       

        %Update sensory_modality,更新感觉因子

        sensory_modality=sensory_modality_NEW(sensory_modality, N_iter);

       

end


% Boundary constraints

function s=simplebounds(s,Lb,Ub)

 % Apply the lower bound

 ns_tmp=s;

 I=ns_tmp<Lb;

 ns_tmp(I)=Lb;

 

 % Apply the upper bounds

 J=ns_tmp>Ub;

 ns_tmp(J)=Ub;

 % Update this new move

 s=ns_tmp;

function y=sensory_modality_NEW(x,Ngen)

y=x+(0.025/(x*Ngen));

⛄ 运行结果

⛄ 参考文献

[1] 李彦苍, 卜英乔, 朱海涛,等. 融合最优邻域扰动和反向学习策略的蝴蝶优化算法[J]. 中国科技论文, 2021, 16(11):8.

[2] 刘凯, 代永强. 融合变异策略的自适应蝴蝶优化算法[J].  2022.

[3] 刘景森马义想李煜. 改进蝴蝶算法求解多维复杂函数优化问题[J]. 电子学报, 2021, 049(006):1068-1076.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章