m基于分段蚁群算法优化SVM的数据预测matlab仿真

简介: m基于分段蚁群算法优化SVM的数据预测matlab仿真

1.算法描述

   支持向量机(support vector machines, SVM)是二分类算法,所谓二分类即把具有多个特性(属性)的数据分为两类,目前主流机器学习算法中,神经网络等其他机器学习模型已经能很好完成二分类、多分类,学习和研究SVM,理解SVM背后丰富算法知识,对以后研究其他算法大有裨益;在实现SVM过程中,会综合利用之前介绍的一维搜索、KKT条件、惩罚函数等相关知识。本篇首先通过详解SVM原理,后介绍如何利用python从零实现SVM算法。
     实例中样本明显的分为两类,黑色实心点不妨为类别一,空心圆点可命名为类别二,在实际应用中会把类别数值化,比如类别一用1表示,类别二用-1表示,称数值化后的类别为标签。每个类别分别对应于标签1、还是-1表示没有硬性规定,可以根据自己喜好即可,需要注意的是,由于SVM算法标签也会参与数学运算,这里不能把类别标签设为0。

1796678e250b0e14471b86aad21060d7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
849b4f595eed5471e29cde04e09a8ea1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5e3259daa9e7503587b0a5a1ed102499_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

线性核:
主要用于线性可分的情况,我们可以看到特征空间到输入空间的维度是一样的,其参数少速度快,对于线性可分数据,其分类效果很理想
通常首先尝试用线性核函数来做分类,看看效果如何,如果不行再换别的
优点:方案首选、简单、可解释性强:可以轻易知道哪些feature是重要的
缺点:只能解决线性可分的问题

高斯核:

通过调控参数,高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。
如果σ \sigmaσ选得很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;
如果σ \sigmaσ选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。
优点:可以映射到无限维、决策边界更为多维、只有一个参数
缺点:可解释性差、计算速度慢、容易过拟合

多项式核

多项式核函数可以实现将低维的输入空间映射到高纬的特征空间,
但是多项式核函数的参数多
当多项式的阶数比较高的时候,核矩阵的元素值将趋于无穷大或者无穷小,计算复杂度会大到无法计算。
优点:可解决非线性问题、主观设置
缺点:多参数选择、计算量大
sigmoid核

采用sigmoid核函数,支持向量机实现的就是只包含一个隐层,激活函数为 Sigmoid 函数的神经网络。
应用SVM方法,隐含层节点数目(它确定神经网络的结构)、隐含层节点对输入节点的权值都是在设计(训练)的过程中自动确定的。
而且支持向量机的理论基础决定了它最终求得的是全局最优值而不是局部最小值,也保证了它对于未知样本的良好泛化能力而不会出现过学习现象。
如图, 输入层->隐藏层之间的权重是每个支撑向量,隐藏层的计算结果是支撑向量和输入向量的内积,隐藏层->输出层之间的权重是支撑向量对应的

  蚁群算法是受到对真实蚂蚁群觅食行为研究的启发而提出。生物学研究表明:一群相互协作的蚂蚁能够找到食物和巢穴之间的最短路径,而单只蚂蚁则不能。生物学家经过大量细致观察研究发现,蚂蚁个体之间的行为是相互作用相互影响的。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为信息素的物质,而此物质恰恰是蚂蚁个体之间信息传递交流的载体。蚂蚁在运动时能够感知这种物质,并且习惯于追踪此物质爬行,当然爬行过程中还会释放信息素。一条路上的信息素踪迹越浓,其它蚂蚁将以越高的概率跟随爬行此路径,从而该路径上的信息素踪迹会被加强,因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象。某一路径上走过的蚂蚁越多,则后来者选择该路径的可能性就越大。蚂蚁个体之间就是通过这种间接的通信机制实现协同搜索最短路径的目标的。

   蚁群算法是对自然界蚂蚁的寻径方式进行模拟而得出的一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下信息素进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此来指导自己的运动方向。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

2.仿真效果预览
matlab2022a仿真结果如下:

793d40843e7be2a3dab296422226e67d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
01e431172a4255e2c0a580eb5760fc05_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1978c434ab9258371e8cd59caefd3a2c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

M  = length(LB);%决策变量的个数
%蚁群位置初始化
X  = zeros(M,N);
for i=1:M
    x=unifrnd(LB(i),UB(i),1,N);
    X(i,:)=x;
end
%输出变量初始化
BESTX = cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体
BESTY = zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值
k     = 1;%迭代计数器初始化
Tau   = ones(1,N);%信息素初始化
Y     = zeros(1,N);%适应值初始化
 
%% 第二步:迭代过程
while k<=K
    k
    YY=zeros(1,N);
    for n=1:N
        x     = X(:,n);
        J     = func_fitness(X_train,X_test,T_train,T_test,x(1),x(2),x(3));
        YY(n) = J;
    end
    maxYY   = max(YY);
    temppos = find(YY==maxYY);
    POS     = temppos(1);
 
    %蚂蚁随机探路
    for n=1:N
        x   = X(:,n);
        J   = func_fitness(X_train,X_test,T_train,T_test,x(1),x(2),x(3));
        Fx  = J;
        mx  = x + Lambda*rand*x;           
        J   = func_fitness(X_train,X_test,T_train,T_test,mx(1),mx(2),mx(3));
        Fmx = J;
        if Fmx<Fx
            X(:,n)=mx;
            Y(n)=Fmx;
        else
            X(:,n)=x;
            Y(n)=Fx;
        end
    end
    %朝信息素最大的地方移动
    for n=1:N
        rng(n*k);
        if n~=POS & rand <= 1-k/K
.............................................................
        end
    end
    indy     = find(Y==0);
    Y(indy)  = 1;
    %更新信息素并记录
    Tau      = Tau*(1-Rho);
    maxY     = max(Y);
    minY     = min(Y);
    DeltaTau = Q*(maxY-Y)/(maxY-minY)/1e1;
    p        = 0.05*Tau;
    Tau      = (1-p).*Tau + DeltaTau;
    minY     = min(Y);
    pos4     = find(Y==minY);
    BESTX{k} = X(:,pos4(1));
    
    %更新移动速度
    if k <= 1
       e1     = minY; 
       Lambda = Lambda;
    else
       Lambda = Lambda + 0.15*(minY-e1); 
       e1     = minY; 
    end
    
    k=k+1;
end
C0      = BESTX{end}(1);
gamma0  = BESTX{end}(2);
tt0     = BESTX{end}(3);
save ACO.mat C0 gamma0 tt0
end
 
 
if SEL == 2
load ACO.mat
%调用四个最优的参数
C     = C0;
gamma = gamma0;
tt    = tt0;
 
cmd       = ['-s 3',[' -t ', num2str(ceil(tt))],[' -c ', num2str(C)],[' -g ',num2str(gamma)],' -p 0.00001']; 
 
model     = svmtrain(T_train,X_train,cmd);
 
[yIn,input1ps] = mapminmax(In');
[Predict1,error1] = svmpredict(Out,yIn',model);
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
2天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。

热门文章

最新文章