PyTorch深度学习实战 | 深度学习框架(PyTorch)

简介: PyTorch是当前主流深度学习框架之一,其设计追求最少的封装、最直观的设计,其简洁优美的特性使得PyTorch代码更易理解,对新手非常友好。本文主要介绍深度学习框架中PyTorch部分。

640.jpg

1、PyTorch简介

2017年1月,Facebook人工智能研究院(FAIR)团队在GitHub上开源了PyTorch,并迅速占领GitHub热度榜榜首。

作为具有先进设计理念的框架,PyTorch的历史可追溯到Torch。Torch于2002年诞生于纽约大学,它使用了一种受众面比较小的语言Lua作为接口。Lua具有简洁高效的特点,但由于其过于小众,导致很多人听说要掌握Torch必须新学一门语言而望而却步。

考虑到Python在计算科学领域的领先地位,以及其生态的完整性和接口的易用性,几乎任何框架都不可避免地要提供Python接口。因此,Torch的幕后团队推出了PyTorch。PyTorch不是简单地封装Lua,Torch提供Python接口,而是对Tensor之上的所有模块进行了重构,并新增了最先进的自动求导系统,成为当下最流行的动态图框架。

PyTorch一经推出就立刻引起了广泛关注,并迅速在研究领域流行起来。PyTorch自发布起关注度就在不断上升,截至2017年10月18日,PyTorch的热度已然超越了其他三个框架(Caffe、MXNet和Theano),并且其热度还在持续上升中。

2、PyTorch的特点

PyTorch可以看作是加入了GPU支持的Numpy。而TensorFlow与Caffe都是命令式的编程语言,而且它们是静态的,即首先必须构建一个神经网络,然后一次又一次使用同样的结构;如果想要改变网络的结构,就必须从头开始。但是PyTorch通过一种反向自动求导的技术,可以让用户零延迟地任意改变神经网络的行为,尽管这项技术不是PyTorch所独有,但到目前为止它的实现是最快的,这也是PyTorch对比TensorFlow最大的优势。

PyTorch的设计思路是线性、直观且易于使用的,当用户执行一行代码时,它会忠实地执行,所以当用户的代码出现缺陷(bug)的时候,可以通过这些信息轻松快捷地找到出错的代码,不会让用户在调试(Debug)的时候因为错误的指向或者异步和不透明的引擎浪费太多的时间。

PyTorch的代码相对于TensorFlow而言,更加简洁直观,同时对于TensorFlow高度工业化的很难看懂的底层代码,PyTorch的源代码就要友好得多,更容易看懂。深入API,理解PyTorch底层肯定是一件令人高兴的事。

3、PyTorch概述

由于在后文中还会详细介绍PyTorch的特点,在此处就不详细介绍了。PyTorch最大的优势是建立的神经网络是动态的,可以非常容易地输出每一步的调试结果,相比于其他框架来说,调试起来十分方便。

如图1和图2所示,PyTorch的图是随着代码的运行逐步建立起来的,也就是说,使用者并不需要在一开始就定义好全部的网络结构,而是可以随着编码的进行来一点儿一点儿地调试,相比于TensorFlow和Caffe的静态图而言,这种设计显得更加贴近一般人的编码习惯。

640.png


■ 图1 动态图1


640.png


■ 图2 动态图2


PyTorch的代码如图2所示,相比于TensorFlow和Caffe而言显得可读性非常高,网络各层的定义与传播方法一目了然,甚至不需要过多的文档与注释,单凭代码就可以很容易理解其功能,也就成为许多初学者的首选。

640.png


■ 图2 PyTorch代码示例

目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
蒋星熠Jaxonic,深度学习探索者。本文深度对比TensorFlow与PyTorch架构、性能、生态及应用场景,剖析技术选型关键,助力开发者在二进制星河中驾驭AI未来。
769 13
|
5月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
398 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
4月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
390 9
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
359 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
12月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
1076 0
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
483 22
|
10月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1264 64
计算机视觉五大技术——深度学习在图像处理中的应用

推荐镜像

更多