【BP回归预测】基于鸟群算法优化BP神经网络实现交通流数据回归预测附matlab代码

简介: 【BP回归预测】基于鸟群算法优化BP神经网络实现交通流数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在日益繁忙的工作生活中,交通出行占据的重要地位已经日益凸显.减缓交通拥堵,提高路网的使用效率,尽最大可能减少交通事故的发生概率,已经成为各个国家共识.路网交通流预测算法的进一步研究及应用,已经作为解决上述一系列问题的一个有效处理方案,在智能交通系统(Intelligent Transport Systems,ITS)扮演着日益重要的角色.为了使传统的BP神经网络算法能够适用于中时交通流预测,提出一种基于鸟群算法优化深层BP神经网络算法.将传统遗传算法优化的BP神经网络进行了优化和调整,分别在不同的隐含层数量,输入节点数量以及隐含层节点数量的条件下进行多次实验,从预测精度和运算效率两个方面综合考虑得到了针对中时交通流预测的最优神经网络结构.

⛄ 部分代码

%% 清空环境变量

clear all

close all

clc

tic

%% 加载数据

load daolushuju.mat

% 随机产生训练集和测试集

temp=randperm(size(NIR,1));

%temp=(1:112);

% 5. 数据反归一化

T_sim1 = mapminmax('reverse',t_sim1,ps_output);   %反归一化结果

%  相对误差error

error3 = abs(T_sim1 - T_test);

error4 = abs(T_sim1 - T_test)./T_test;

% 2. 决定系数R^2

R3 = (N * sum(T_sim1 .* T_test) - sum(T_sim1) * sum(T_test))^2 / ((N * sum((T_sim1).^2) - (sum(T_sim1))^2) * (N * sum((T_test).^2) - (sum(T_test))^2));

% 3. 结果对比

result = [T_test' T_sim1' error3'];     %输出真实值,预测值,误差

%% VI. 绘图

figure(3)

plot(1:N,T_test,'b:*',1:N,T_sim1,'g-o')

legend('评价值','测试值')

xlabel('测试样本')

ylabel('PQI')

string = {'BP道路数据测试结果对比';['R^2=' num2str(R3)]};

title(string)


%% VI. 绘图

figure(4)

plot(1:N,error3,'b:*',1:N,error1,'g-o')

legend('BP绝对误差','BAS-BP绝对误差')

xlabel('测试样本')

ylabel('绝对误差')

⛄ 运行结果

⛄ 参考文献

[1] 赵怀柏, 王逸凡, 宋晓鹏. 基于遗传算法优化BP神经网络的交通流预测[J]. 交通与运输, 2017(A02):5.

[2] 季雪美. 基于优化的BP神经网络的短时交通流预测算法研究[D]. 青岛大学.

[3] 王京. Bp神经网络与多重线性回归在住院费用中建模比较研究. 河北联合大学, 2011.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
20天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
26天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
14天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章