力扣207:课程表(Java拓扑排序:bfs+dfs)

简介: 力扣207:课程表(Java拓扑排序:bfs+dfs)

一、题目描述



你这个学期必须选修 numCourses 门课程,记为 0numCourses - 1


在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai必须 先学习课程  bi

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false


示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]

输出:true

解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。


示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]

输出:false

解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。


提示:


1 <= numCourses <= 105

0 <= prerequisites.length <= 5000

prerequisites[i].length == 2

0 <= ai, bi < numCourses

prerequisites[i] 中的所有课程对 互不相同


二、思路讲解



这是一道经典的拓扑排序问题,课程能不能修完 == 有向图中是否存在环,有向图中,一个节点的入度为他的先修课程。


2.1 方法一:广度优先搜索bfs

     

思路如下:通过bfs进行拓扑排序。利用一个队列,将入度数为0的节点加入到队列中(这些课程没有先修课程,可以访问),然后将队列中的节点依次出队,每出队一个节点,就相当于访问了这个节点(修了这门课程),就要将它在有向图中“删除”,即将它所有的出度的入度数都-1,然后将这时可能有些课程的入度数为0了,那这也是可以修的课程,也将他放入队列中。当队列为空时,拓扑排序完成,如果所有节点都访问到了,说明有向图中没有环;反之,有环。

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        //记录入度数
        int []indegrees = new int[numCourses];
        //出度表
        List<List<Integer>> edegree = new ArrayList<>();
        for(int i=0; i<numCourses; i++) {
            edegree.add(new ArrayList<Integer>());
        }
        //统计每个节点的出度节点  和  入度数
        for(int i=0; i<prerequisites.length; i++) {
            edegree.get(prerequisites[i][1]).add(prerequisites[i][0]);
            indegrees[prerequisites[i][0]]++;
        }
        //bfs
        Queue<Integer> queue = new LinkedList<>();
        for(int i=0; i<numCourses; i++) {
            if(indegrees[i] == 0) {
                queue.add(i);
            }
        }
        int visited = 0;    //访问节点的数量,如果和节点总数一致,说明每个节点都访问到了,有向图中不存在环
        while(!queue.isEmpty()) {
            visited++;
            int node = queue.poll();
            //把该节点的所有出度的入度数都-1,相当于把这个节点从有向图中删除
            for(int ede : edegree.get(node)) {
                indegrees[ede]--;
                //把入度数为0的节点放到队列中,这些节点是可以访问的
                if(indegrees[ede] == 0) {
                    queue.add(ede);
                }
            }
        }
        return visited==numCourses;
    }
}


时间复杂度:        O(M + N)         M为课程数,N为先修课程的要求数


空间复杂度:        O(M + N)


2.2 深度优先搜索dfs


跟bfs从入度思考相比,dfs从出度思考,更像是一种逆向思维。


思路:深度遍历判断有向图是否存在环。用visit数组记录节点的访问状态(1:当前节点正在访问; 0:未被访问; -1:被其他节点访问过)。如果当前节点的状态为-1,说明已经被其他节点访问过,已经被从有向图中“删除了”,无需考虑;而状态为1,说明是正在被访问的,则说明走了回头路,即存在环。

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        //记录每个节点的访问情况    1:当前节点正在访问; 0:未被访问; -1:被其他节点访问过
        int []visit = new int[numCourses];
        //出度表
        List<List<Integer>> edegree = new ArrayList<>();
        for(int i=0; i<numCourses; i++) {
            edegree.add(new ArrayList<Integer>());
        }
        //统计每个节点的出度节点
        for(int i=0; i<prerequisites.length; i++) {
            edegree.get(prerequisites[i][1]).add(prerequisites[i][0]);
        }
        for(int i=0; i<numCourses; i++) {
            if(!dfs(edegree, visit, i)) {
                return false;
            }
        }
        return true;
    }
    boolean dfs(List<List<Integer>> edegree, int []visit, int i) {
        //如果已经被其他节点访问过,说明不需要再访问了
        if(visit[i] == -1) {
            return true;
        }
        //正在被当前节点访问,说明走了回头路,即存在环
        if(visit[i] == 1) {
            return false;
        }
        visit[i] = 1;
        //向下访问,每个出度都要走到
        for(int ede : edegree.get(i)) {
            if(!dfs(edegree, visit, ede)) {
                return false;
            }
        }
        visit[i] = -1;
        return true;
    }
}


可以把邻接表和访问状态数组设置为公共变量,减少递归传参对性能的损耗:

class Solution {
    int []visit;
    List<List<Integer>> edegree;
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        visit = new int[numCourses];
        edegree = new ArrayList<>();
        for(int i=0; i<numCourses; i++) {
            edegree.add(new ArrayList<Integer>());
        }
        //统计每个节点的出度节点
        for(int i=0; i<prerequisites.length; i++) {
            edegree.get(prerequisites[i][1]).add(prerequisites[i][0]);
        }
        for(int i=0; i<numCourses; i++) {
            if(!dfs(i)) {
                return false;
            }
        }
        return true;
    }
    boolean dfs(int i) {
        if(visit[i] == -1) {
            return true;
        }
        if(visit[i] == 1) {
            return false;
        }
        visit[i] = 1;
        for(int ede : edegree.get(i)) {
            if(!dfs(ede)) {
                return false;
            }
        }
        visit[i] = -1;
        return true;
    }
}


时间复杂度:        O(M + N)         M为课程数,N为先修课程的要求数


空间复杂度:        O(M + N)

相关文章
|
4月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
93 0
|
4月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
149 1
|
12月前
|
索引
Leetcode第三十三题(搜索旋转排序数组)
这篇文章介绍了解决LeetCode第33题“搜索旋转排序数组”的方法,该问题要求在旋转过的升序数组中找到给定目标值的索引,如果存在则返回索引,否则返回-1,文章提供了一个时间复杂度为O(logn)的二分搜索算法实现。
98 0
Leetcode第三十三题(搜索旋转排序数组)
|
12月前
|
算法 Java
LeetCode(一)Java
LeetCode(一)Java
128 0
|
12月前
【LeetCode-每日一题】 删除排序数组中的重复项
【LeetCode-每日一题】 删除排序数组中的重复项
87 4
|
存储 算法
LeetCode第83题删除排序链表中的重复元素
文章介绍了LeetCode第83题"删除排序链表中的重复元素"的解法,使用双指针技术在原链表上原地删除重复元素,提供了一种时间和空间效率都较高的解决方案。
LeetCode第83题删除排序链表中的重复元素
|
算法 索引
LeetCode第34题在排序数组中查找元素的第一个和最后一个位置
这篇文章介绍了LeetCode第34题"在排序数组中查找元素的第一个和最后一个位置"的解题方法,通过使用双指针法从数组两端向中间同时查找目标值,有效地找到了目标值的首次和最后一次出现的索引位置。
LeetCode第34题在排序数组中查找元素的第一个和最后一个位置
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
151 2
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
159 1
|
存储 算法 Java
LeetCode经典算法题:预测赢家+香槟塔java解法
LeetCode经典算法题:预测赢家+香槟塔java解法
174 1

热门文章

最新文章