LeetCode经典算法题:打家劫舍java详解

简介: LeetCode经典算法题:打家劫舍java详解

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

输入:[1,2,3,1] 输出:4

输入:[2,7,9,3,1] 输出:12

解题思路与代码

    static int maxMoney(int[] nums,int index){
        if (nums == null || index < 0) {
            return 0;
        }
        if (index == 0) {
            return nums[0];
        }
        return Math.max(maxMoney(nums,index - 2) + nums[index], maxMoney(nums,index
                - 1));
    }
    static int maxMoney(int[] nums){
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }


        /*
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
        */

        int first = nums[0], second = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
如果房子首尾相连:
    public int rob(int[] nums) {
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        } else if (length == 2) {
            return Math.max(nums[0], nums[1]);
        }
        return Math.max(robRange(nums, 0, length - 2), robRange(nums, 1, length -
                1));
    }
    public int robRange(int[] nums, int start, int end) {
        int first = nums[start], second = Math.max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
    public int rob(TreeNode root) {
        int[] rootStatus = dfs(root);
        return Math.max(rootStatus[0], rootStatus[1]);
    }
    public int[] dfs(TreeNode node) {
        if (node == null) {
            return new int[]{0, 0};
        }
        int[] l = dfs(node.left);
        int[] r = dfs(node.right);
        int selected = node.val + l[1] + r[1];
        int notSelected = Math.max(l[0], l[1]) + Math.max(r[0], r[1]);
        return new int[]{selected, notSelected};
    }

预测赢家

题目描述

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。

每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

解题思路与代码

给定一个表示分数的数组,预测玩家1是否会成为赢家。可以假设每个玩家的玩法都会使他的分数最大化。

两个值的时候必然是取较大的,三个值,取一个能使自己分数和最大的,后手必然留较小的给先手,因此先手选一个值加上该较小值最大化

 static int maxScore(int[] nums, int l, int r) {
        //剩下一个值,只能取该值
        if (l == r) {
            return nums[l];
        }
        int selectLeft =0, selectRight=nums.length-1;
        //剩下大于两个值,先手选一边(使自己得分最高的一边),后手则选使对手得分最低的一边
        if ((r - l) >= 2) {
            selectLeft = nums[l] +Math.min(maxScore(nums, l+2, r),maxScore(nums,
                    l+1, r-1));
            selectRight = nums[r] +Math.min(maxScore(nums, l+1, r-1),maxScore(nums,
                    l, r-2));
        }
        //剩下两个值,取较大的
        if ((r - l) == 1) {
            selectLeft = nums[l];
            selectRight = nums[r];
        }
        return Math.max(selectLeft, selectRight);
    }
    int getScore(int[] nums, int start, int end) {
        int selectLeft, selectRight;
        int gap = end - start;
        if (gap == 0) {
            return nums[start];
        } else if (gap == 1) { // 此时直接取左右的值就可以
            selectLeft = nums[start];
            selectRight = nums[end];
        } else if (gap >= 2) { // 如果gap大于2,递归计算selectLeft和selectRight
            // 计算的过程为什么用min,因为要按照对手也是最聪明的来计算。
            int num = getScore(nums, start + 1, end - 1);
            selectLeft = nums[start] + min(getScore(nums, start + 2, end), num);
            selectRight = nums[end] + min(num, getScore(nums, start, end - 2));
        }
        return max(selectLeft, selectRight);
    }
    bool PredictTheWinner(int[] nums) {
        int sum = 0;
        for (int i : nums) {
            sum += i;
            int player1 = getScore(nums, 0, nums.size() - 1);
            int player2 = sum - player1;
            // 如果最终两个玩家的分数相等,那么玩家 1 仍为赢家,所以是大于等于。
            return player1 >= player2;
            //return getScore(nums, 0, nums.size() - 1) >=0 ;
        }
        //差值
        int getScore(int[] nums, int start, int end) {
            if (end == start) {
                return nums[start];
            }
            int selectLeft = nums[start] - getScore(nums, start + 1, end);
            int selectRight = nums[end] - getScore(nums, start, end - 1);
            return max(selectLeft, selectRight);
        }      

动态规划:使用二维数组存储差值

    public boolean PredictTheWinner(int[] nums) {
        int length = nums.length;
        int[][] dp = new int[length][length];
        for (int i = 0; i < length; i++) {
            dp[i][i] = nums[i];
        }
        for (int i = length - 2; i >= 0; i--) {
            for (int j = i + 1; j < length; j++) {
                //j = i +1 因此可以优化为一维数组,下标位置相同才有值,据此推导其他的值
                //Math.max(nums[i] - dp[j][j], nums[j] - dp[j - 1][j - 1]);
                dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
            }
        }
        return dp[0][length - 1] >= 0;
    }

省份数量

题目描述

有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c直接相连,那么城市 a 与城市 c 间接相连。

省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。

给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。

返回矩阵中 省份 的数量。

解题思路与代码

解法一:深度优先

获取一个城市,通过递归找到离该城市最远的城市,标记为已访问,然后逐个向内进行标记

  public int findCircleNum(int[][] isConnected) {
        int provinces = isConnected.length;
        boolean[] visited = new boolean[provinces];
        int circles = 0;
        for (int i = 0; i < provinces; i++) {
            if (!visited[i]) {
                dfs(isConnected, visited, provinces, i);
                circles++;
            }
        }
        return circles;
    }
    public void dfs(int[][] isConnected, boolean[] visited, int provinces, int i) {
        for (int j = 0; j < provinces; j++) {
            if (isConnected[i][j] == 1 && !visited[j]) {
                visited[j] = true;
                dfs(isConnected, visited, provinces, j);
            }
        }
    }

解法二:广度优先

获取一个城市,先标记与该城市直连的城市(最近的),然后逐步向外扩散寻找

    public int bfs(int[][] isConnected) {
        int provinces = isConnected.length;
        boolean[] visited = new boolean[provinces];
        int circles = 0;
        Queue<Integer> queue = new LinkedList<Integer>();
        for (int i = 0; i < provinces; i++) {
            if (!visited[i]) {
                queue.offer(i);
                while (!queue.isEmpty()) {
                    int j = queue.poll();
                    visited[j] = true;
                    for (int k = 0; k < provinces; k++) {
                        if (isConnected[j][k] == 1 && !visited[k]) {
                            queue.offer(k);
                        }
                    }
                }
                circles++;
            }
        }
        return circles;
    }


解法三:并查集

将每个城市看成一个节点,如果两个城市相连,则建立树关系,选出其中一个为head,如果两个树中的节点也相连,则将其中一个head设置为另一个树的head

两个方法 :一个寻找head节点,一个合并树

    static int mergeFind(int[][] isConnected){
        int provinces = isConnected.length;
        int[] head = new int[provinces];
        int[] level = new int[provinces];
        for (int i = 0; i < provinces; i++) {
            head[i] = i;
            level[i] = 1;
        }
        for (int i = 0; i < provinces; i++) {
            for (int j = i + 1; j < provinces; j++) {
                if (isConnected[i][j] == 1) {
                    merge(i, j,head,level);
                }
            }
        }
        int count = 0;
        //找出所有的head
        for (int i = 0; i < provinces; i++) {
            if (head[i] == i) {
                count++;
            }
        }
        return count;
    }
    //查找head节点
    static int find(int x, int[] arr) {
        if(arr[x] == x)
            return x;
        else
            arr[x] = find(arr[x],arr);//路径压缩,每一个节点直接能找到head
        return arr[x];
    }
    static void merge(int x, int y,int[] arr,int[] level) {
        int i = find(x,arr);
        int j = find(y,arr);
        //深度比较短的树的head往深度大的树上挂,使合并后的深度尽量小
        if(i == j){
            return;
        }
        if(level[i] <= level[j]){
            arr[i] = j;
        }else{
            arr[j] = i;
        }
        //深度加1
        level[j]++;
    }

三角形的最大周长

题目描述

给定由一些正数(代表长度)组成的数组 A ,返回由其中三个长度组成的、面积不为零的三角形的最大周长。

如果不能形成任何面积不为零的三角形,返回 0 。

解题思路与代码

贪心算法:

先小到大排序,假设最长边是最后下标,另外两条边是倒数第二和第三下标,则此时三角形周长最大

n < (n-1) + (n-2),如果不成立,意味着该数组中不可能有另外两个值之和大于n,此时将n左移,重新计算

 public int largestPerimeter(int[] A) {
        Arrays.sort(A);
        for (int i = A.length - 1; i >= 2; --i) {
            if (A[i - 2] + A[i - 1] > A[i]) {
                return A[i - 2] + A[i - 1] + A[i];
            }
        }
        return 0;
    }


目录
相关文章
|
10天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4天前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
22 3
|
5月前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
127 15
|
4月前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
13天前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
30 3
|
7月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
214 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
4月前
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
4月前
|
运维 监控 算法
企业局域网监控软件中 Java 优先队列算法的核心优势
企业局域网监控软件是数字化时代企业网络安全与高效运营的基石,犹如一位洞察秋毫的卫士。通过Java实现的优先队列算法,它能依据事件优先级排序,确保关键网络事件如异常流量、数据泄露等被优先处理,保障系统稳定与安全。代码示例展示了如何定义网络事件类并使用PriorityQueue处理高优先级事件,尤其在面对疑似风险时迅速启动应急措施。这一核心技术助力企业在复杂网络环境中稳健前行,护航业务腾飞。
81 32
|
4月前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
153 16