LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

简介: LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

二叉树遍历

题目描述

从根节点往下查找,先找左子树、直至左子树为空(左子节点逐个入栈、直至左子节点为空),再找右子树(出栈找右子节点)

前序遍历:根左右,第一次经过节点即打印,直到打印null,往回溯,打印右子树

中序遍历:左根右,第二次经过该节点时进行打印,即左边回溯时

后序遍历:左右根,第三次经过该节点时进行打印,即右边回溯时

层序遍历:按照层级,从上往下,从左到右。使用广度优先搜索算法。

从根节点往下查找,先找左子树、直至左子树为空(左子节点逐个入栈、直至左子节点为空),再找右子树(出栈找右子节点)

解题思路与代码

递归遍历

    public static void preorder(TreeNode root) {
        if (root == null) {
            return;
        }
        //System.out.println(root.val);//前序 第一次成为栈顶
        preorder(root.left);
        System.out.println(root.val);//中序 第二次成为栈顶
        preorder(root.right);
        //System.out.println(root.val);//后序 第三次成为栈顶
    }

迭代遍历

    //前序:使用stack记录递归路径,左子节点后添加保证先出栈
    public static void preOrder2(TreeNode head) {
        if (head != null) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            stack.add(head);
            while (!stack.isEmpty()) {
                head = stack.pop();
                if(head != null){
                    System.out.println(head.val);
                    stack.push(head.right);
                    stack.push(head.left);
                }
            }
        }
    }
    //中序:将左子节点入栈,出栈打印值,然后添加右子节点
    public static void preOrder3(TreeNode head) {
        if (head != null) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            while (!stack.isEmpty() || head != null) {
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                } else {
                    head = stack.pop();
                    System.out.println(head.val);
                    head = head.right;
                }
            }
        }
    }
    //后序:
    public static void postorderTraversal(TreeNode root) {
        if (root == null) {
            return ;
        }
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();//root的左子节点为null
            if (root.right == null || root.right == prev) {//右子节点为null,或者右子节点已打印
                System.out.println(root.val);
                prev = root;
                root = null;
            } else {//右子节点有值,重新入栈
                stack.push(root);
                root = root.right;
            }
        }
    }

层序遍历

   public static void levelTraversal(Node root) {
        Queue<Node> q = new LinkedList<>();
        q.add(root);

        while (!q.isEmpty()) {
            Node temp = q.poll();
            if (temp != null) {
                System.out.print(temp.value + " ");
                q.add(temp.left);
                q.add(temp.right);
            }
        }
    }
    public static void deepOrder(TreeNode root) {
        if (root == null) {
            return ;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            for (int i = 1; i <= queue.size(); ++i) {
                TreeNode node = queue.poll();
                System.out.println(node.val);
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
        }
    }
    private static List order(TreeNode root, int i, ArrayList list) {
        if (root == null) {
            return null;
        }
        int length = list.size();
        if(length <= i){
            for(int j=0; j<= i-length; j++){
                list.add(length+j,null);
            }
        }
        list.set(i,root.val);
        order(root.left, 2 * i,list);
        order(root.right, 2 * i + 1,list);
        return list;
    }

线索二叉树:

在N个节点的二叉树中,每个节点有2个指针,所以一共有2N个指针,除了根节点以外,每一个节点都有一个指针从它的父节点指向它,所以一共使用了N-1个指针,所以剩下2N-(N-1)也就是N+1个空指针;

如果能利用这些空指针域来存放指向该节点的直接前驱或是直接后继的指针,则可由此信息直接找到在该遍历次序下的前驱节点或后继节点,从而比递归遍历提高了遍历速度,节省了建立系统递归栈所使用的存储空间;


这些被重新利用起来的空指针就被称为线索(Thread),加上了线索的二叉树就是线索二叉树实现思路:按某种次序遍历二叉树,在遍历过程中用线索取代空指针即可。以中序遍历为例,首先找到中序遍历的开始节点,然后利用线索依次查找后继节点即可。


由于它充分利用了空指针域的空间(等于节省了空间),又保证了创建时的一次遍历就可以终生受用前驱、后继的信息(这意味着节省了时间),所以在实际问题中,如果所使用的二叉树需要经常遍历或查找节点时需要某种遍历中的前驱和后继,那么采用线索二叉链表的存储结构就是不错的选择morris遍历:构建中序线索二叉树的过程中,如果发现前驱节点的右指针指向自身,则将指针(线索)删除

public static void morrisPre(Node cur) {
        if(head == null){
            return;
        }
        Node mostRight = null;
        while (cur != null){
            // cur表示当前节点,mostRight表示cur的左孩子的最右节点
            mostRight = cur.left;
            if(mostRight != null){
                // cur有左孩子,找到cur左子树最右节点
                while (mostRight.right !=null && mostRight.right != cur){
                    mostRight = mostRight.right;
                }
                // mostRight的右孩子指向空,让其指向cur,cur向左移动
                if(mostRight.right == null){
                    mostRight.right = cur;
                    System.out.print(cur.value+" ");
                    cur = cur.left;
                    continue;
                }else {
                    // mostRight的右孩子指向cur,让其指向空,cur向右移动
                    mostRight.right = null;
                }
            }else {
                System.out.print(cur.value + " ");
            }
            cur = cur.right;
        }
    }
    public static void morrisIn(Node cur) {
        if(head == null){
            return;
        }
        Node mostRight = null;
        while (cur != null){
            mostRight = cur.left;
            if(mostRight != null){
                while (mostRight.right !=null && mostRight.right != cur){
                    mostRight = mostRight.right;
                }
                if(mostRight.right == null){
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                }else {
                    mostRight.right = null;
                }
            }
            System.out.print(cur.value+" ");
            cur = cur.right;
        }
    }
    public static void morrisPos(TreeNode cur) {
        if (cur == null) {
            return;
        }
        TreeNode head = cur;
        TreeNode mostRight = null;
        while (cur != null) {
            mostRight = cur.left;
            if (mostRight != null) {
                while (mostRight.right != null && mostRight.right != cur) {
                    mostRight = mostRight.right;
                }
                if (mostRight.right == null) {
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
                    mostRight.right = null;
                    printEdge(cur.left);
                }
            }
            cur = cur.right;
        }
        printEdge(head);
        System.out.println();
    }
    public static void printEdge(TreeNode head) {
        TreeNode tail = reverseEdge(head);
        TreeNode cur = tail;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.right;
        }
        reverseEdge(tail);
    }
    public static TreeNode reverseEdge(TreeNode from) {
        TreeNode pre = null;
        TreeNode next = null;
        while (from != null) {
            next = from.right
            from.right = pre;
            pre = from;
            from = next;
        }
        return pre;
    }
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();
            if (root.right == null || root.right == prev) {
                res.add(root.val);
                prev = root;
                root = null;
            } else {
                stack.push(root);
                root = root.right;
            }
        }
        return res;
    }

目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
7天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
10天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
30 5
|
10天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
13天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
20 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
21 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
24 0
|
5月前
|
缓存 Java 测试技术
探讨Java中遍历Map集合的最快方式
探讨Java中遍历Map集合的最快方式
72 1
|
5月前
|
存储 缓存 Java
Java遍历Map集合的方法
在Java中,遍历Map集合主要有四种方式:1) 使用`keySet()`遍历keys并用`get()`获取values;2) 使用`entrySet()`直接遍历键值对,效率较高;3) 通过`Iterator`遍历,适合在遍历中删除元素;4) Java 8及以上版本可用`forEach`和Lambda表达式,简洁易读。`entrySet()`通常性能最佳,而遍历方式的选择应考虑代码可读性和数据量。
63 0