LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

简介: LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

二叉树遍历

题目描述

从根节点往下查找,先找左子树、直至左子树为空(左子节点逐个入栈、直至左子节点为空),再找右子树(出栈找右子节点)

前序遍历:根左右,第一次经过节点即打印,直到打印null,往回溯,打印右子树

中序遍历:左根右,第二次经过该节点时进行打印,即左边回溯时

后序遍历:左右根,第三次经过该节点时进行打印,即右边回溯时

层序遍历:按照层级,从上往下,从左到右。使用广度优先搜索算法。

从根节点往下查找,先找左子树、直至左子树为空(左子节点逐个入栈、直至左子节点为空),再找右子树(出栈找右子节点)

解题思路与代码

递归遍历

    public static void preorder(TreeNode root) {
        if (root == null) {
            return;
        }
        //System.out.println(root.val);//前序 第一次成为栈顶
        preorder(root.left);
        System.out.println(root.val);//中序 第二次成为栈顶
        preorder(root.right);
        //System.out.println(root.val);//后序 第三次成为栈顶
    }

迭代遍历

    //前序:使用stack记录递归路径,左子节点后添加保证先出栈
    public static void preOrder2(TreeNode head) {
        if (head != null) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            stack.add(head);
            while (!stack.isEmpty()) {
                head = stack.pop();
                if(head != null){
                    System.out.println(head.val);
                    stack.push(head.right);
                    stack.push(head.left);
                }
            }
        }
    }
    //中序:将左子节点入栈,出栈打印值,然后添加右子节点
    public static void preOrder3(TreeNode head) {
        if (head != null) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            while (!stack.isEmpty() || head != null) {
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                } else {
                    head = stack.pop();
                    System.out.println(head.val);
                    head = head.right;
                }
            }
        }
    }
    //后序:
    public static void postorderTraversal(TreeNode root) {
        if (root == null) {
            return ;
        }
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();//root的左子节点为null
            if (root.right == null || root.right == prev) {//右子节点为null,或者右子节点已打印
                System.out.println(root.val);
                prev = root;
                root = null;
            } else {//右子节点有值,重新入栈
                stack.push(root);
                root = root.right;
            }
        }
    }

层序遍历

   public static void levelTraversal(Node root) {
        Queue<Node> q = new LinkedList<>();
        q.add(root);

        while (!q.isEmpty()) {
            Node temp = q.poll();
            if (temp != null) {
                System.out.print(temp.value + " ");
                q.add(temp.left);
                q.add(temp.right);
            }
        }
    }
    public static void deepOrder(TreeNode root) {
        if (root == null) {
            return ;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            for (int i = 1; i <= queue.size(); ++i) {
                TreeNode node = queue.poll();
                System.out.println(node.val);
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
        }
    }
    private static List order(TreeNode root, int i, ArrayList list) {
        if (root == null) {
            return null;
        }
        int length = list.size();
        if(length <= i){
            for(int j=0; j<= i-length; j++){
                list.add(length+j,null);
            }
        }
        list.set(i,root.val);
        order(root.left, 2 * i,list);
        order(root.right, 2 * i + 1,list);
        return list;
    }

线索二叉树:

在N个节点的二叉树中,每个节点有2个指针,所以一共有2N个指针,除了根节点以外,每一个节点都有一个指针从它的父节点指向它,所以一共使用了N-1个指针,所以剩下2N-(N-1)也就是N+1个空指针;

如果能利用这些空指针域来存放指向该节点的直接前驱或是直接后继的指针,则可由此信息直接找到在该遍历次序下的前驱节点或后继节点,从而比递归遍历提高了遍历速度,节省了建立系统递归栈所使用的存储空间;


这些被重新利用起来的空指针就被称为线索(Thread),加上了线索的二叉树就是线索二叉树实现思路:按某种次序遍历二叉树,在遍历过程中用线索取代空指针即可。以中序遍历为例,首先找到中序遍历的开始节点,然后利用线索依次查找后继节点即可。


由于它充分利用了空指针域的空间(等于节省了空间),又保证了创建时的一次遍历就可以终生受用前驱、后继的信息(这意味着节省了时间),所以在实际问题中,如果所使用的二叉树需要经常遍历或查找节点时需要某种遍历中的前驱和后继,那么采用线索二叉链表的存储结构就是不错的选择morris遍历:构建中序线索二叉树的过程中,如果发现前驱节点的右指针指向自身,则将指针(线索)删除

public static void morrisPre(Node cur) {
        if(head == null){
            return;
        }
        Node mostRight = null;
        while (cur != null){
            // cur表示当前节点,mostRight表示cur的左孩子的最右节点
            mostRight = cur.left;
            if(mostRight != null){
                // cur有左孩子,找到cur左子树最右节点
                while (mostRight.right !=null && mostRight.right != cur){
                    mostRight = mostRight.right;
                }
                // mostRight的右孩子指向空,让其指向cur,cur向左移动
                if(mostRight.right == null){
                    mostRight.right = cur;
                    System.out.print(cur.value+" ");
                    cur = cur.left;
                    continue;
                }else {
                    // mostRight的右孩子指向cur,让其指向空,cur向右移动
                    mostRight.right = null;
                }
            }else {
                System.out.print(cur.value + " ");
            }
            cur = cur.right;
        }
    }
    public static void morrisIn(Node cur) {
        if(head == null){
            return;
        }
        Node mostRight = null;
        while (cur != null){
            mostRight = cur.left;
            if(mostRight != null){
                while (mostRight.right !=null && mostRight.right != cur){
                    mostRight = mostRight.right;
                }
                if(mostRight.right == null){
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                }else {
                    mostRight.right = null;
                }
            }
            System.out.print(cur.value+" ");
            cur = cur.right;
        }
    }
    public static void morrisPos(TreeNode cur) {
        if (cur == null) {
            return;
        }
        TreeNode head = cur;
        TreeNode mostRight = null;
        while (cur != null) {
            mostRight = cur.left;
            if (mostRight != null) {
                while (mostRight.right != null && mostRight.right != cur) {
                    mostRight = mostRight.right;
                }
                if (mostRight.right == null) {
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
                    mostRight.right = null;
                    printEdge(cur.left);
                }
            }
            cur = cur.right;
        }
        printEdge(head);
        System.out.println();
    }
    public static void printEdge(TreeNode head) {
        TreeNode tail = reverseEdge(head);
        TreeNode cur = tail;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.right;
        }
        reverseEdge(tail);
    }
    public static TreeNode reverseEdge(TreeNode from) {
        TreeNode pre = null;
        TreeNode next = null;
        while (from != null) {
            next = from.right
            from.right = pre;
            pre = from;
            from = next;
        }
        return pre;
    }
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();
            if (root.right == null || root.right == prev) {
                res.add(root.val);
                prev = root;
                root = null;
            } else {
                stack.push(root);
                root = root.right;
            }
        }
        return res;
    }

目录
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
55 3
|
22天前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
|
2月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
59 3
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
1月前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
14天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
13天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。

热门文章

最新文章