LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

简介: LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解

二叉树遍历

题目描述

从根节点往下查找,先找左子树、直至左子树为空(左子节点逐个入栈、直至左子节点为空),再找右子树(出栈找右子节点)

前序遍历:根左右,第一次经过节点即打印,直到打印null,往回溯,打印右子树

中序遍历:左根右,第二次经过该节点时进行打印,即左边回溯时

后序遍历:左右根,第三次经过该节点时进行打印,即右边回溯时

层序遍历:按照层级,从上往下,从左到右。使用广度优先搜索算法。

从根节点往下查找,先找左子树、直至左子树为空(左子节点逐个入栈、直至左子节点为空),再找右子树(出栈找右子节点)

解题思路与代码

递归遍历

    public static void preorder(TreeNode root) {
        if (root == null) {
            return;
        }
        //System.out.println(root.val);//前序 第一次成为栈顶
        preorder(root.left);
        System.out.println(root.val);//中序 第二次成为栈顶
        preorder(root.right);
        //System.out.println(root.val);//后序 第三次成为栈顶
    }

迭代遍历

    //前序:使用stack记录递归路径,左子节点后添加保证先出栈
    public static void preOrder2(TreeNode head) {
        if (head != null) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            stack.add(head);
            while (!stack.isEmpty()) {
                head = stack.pop();
                if(head != null){
                    System.out.println(head.val);
                    stack.push(head.right);
                    stack.push(head.left);
                }
            }
        }
    }
    //中序:将左子节点入栈,出栈打印值,然后添加右子节点
    public static void preOrder3(TreeNode head) {
        if (head != null) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            while (!stack.isEmpty() || head != null) {
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                } else {
                    head = stack.pop();
                    System.out.println(head.val);
                    head = head.right;
                }
            }
        }
    }
    //后序:
    public static void postorderTraversal(TreeNode root) {
        if (root == null) {
            return ;
        }
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();//root的左子节点为null
            if (root.right == null || root.right == prev) {//右子节点为null,或者右子节点已打印
                System.out.println(root.val);
                prev = root;
                root = null;
            } else {//右子节点有值,重新入栈
                stack.push(root);
                root = root.right;
            }
        }
    }

层序遍历

   public static void levelTraversal(Node root) {
        Queue<Node> q = new LinkedList<>();
        q.add(root);

        while (!q.isEmpty()) {
            Node temp = q.poll();
            if (temp != null) {
                System.out.print(temp.value + " ");
                q.add(temp.left);
                q.add(temp.right);
            }
        }
    }
    public static void deepOrder(TreeNode root) {
        if (root == null) {
            return ;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            for (int i = 1; i <= queue.size(); ++i) {
                TreeNode node = queue.poll();
                System.out.println(node.val);
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
        }
    }
    private static List order(TreeNode root, int i, ArrayList list) {
        if (root == null) {
            return null;
        }
        int length = list.size();
        if(length <= i){
            for(int j=0; j<= i-length; j++){
                list.add(length+j,null);
            }
        }
        list.set(i,root.val);
        order(root.left, 2 * i,list);
        order(root.right, 2 * i + 1,list);
        return list;
    }

线索二叉树:

在N个节点的二叉树中,每个节点有2个指针,所以一共有2N个指针,除了根节点以外,每一个节点都有一个指针从它的父节点指向它,所以一共使用了N-1个指针,所以剩下2N-(N-1)也就是N+1个空指针;

如果能利用这些空指针域来存放指向该节点的直接前驱或是直接后继的指针,则可由此信息直接找到在该遍历次序下的前驱节点或后继节点,从而比递归遍历提高了遍历速度,节省了建立系统递归栈所使用的存储空间;


这些被重新利用起来的空指针就被称为线索(Thread),加上了线索的二叉树就是线索二叉树实现思路:按某种次序遍历二叉树,在遍历过程中用线索取代空指针即可。以中序遍历为例,首先找到中序遍历的开始节点,然后利用线索依次查找后继节点即可。


由于它充分利用了空指针域的空间(等于节省了空间),又保证了创建时的一次遍历就可以终生受用前驱、后继的信息(这意味着节省了时间),所以在实际问题中,如果所使用的二叉树需要经常遍历或查找节点时需要某种遍历中的前驱和后继,那么采用线索二叉链表的存储结构就是不错的选择morris遍历:构建中序线索二叉树的过程中,如果发现前驱节点的右指针指向自身,则将指针(线索)删除

public static void morrisPre(Node cur) {
        if(head == null){
            return;
        }
        Node mostRight = null;
        while (cur != null){
            // cur表示当前节点,mostRight表示cur的左孩子的最右节点
            mostRight = cur.left;
            if(mostRight != null){
                // cur有左孩子,找到cur左子树最右节点
                while (mostRight.right !=null && mostRight.right != cur){
                    mostRight = mostRight.right;
                }
                // mostRight的右孩子指向空,让其指向cur,cur向左移动
                if(mostRight.right == null){
                    mostRight.right = cur;
                    System.out.print(cur.value+" ");
                    cur = cur.left;
                    continue;
                }else {
                    // mostRight的右孩子指向cur,让其指向空,cur向右移动
                    mostRight.right = null;
                }
            }else {
                System.out.print(cur.value + " ");
            }
            cur = cur.right;
        }
    }
    public static void morrisIn(Node cur) {
        if(head == null){
            return;
        }
        Node mostRight = null;
        while (cur != null){
            mostRight = cur.left;
            if(mostRight != null){
                while (mostRight.right !=null && mostRight.right != cur){
                    mostRight = mostRight.right;
                }
                if(mostRight.right == null){
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                }else {
                    mostRight.right = null;
                }
            }
            System.out.print(cur.value+" ");
            cur = cur.right;
        }
    }
    public static void morrisPos(TreeNode cur) {
        if (cur == null) {
            return;
        }
        TreeNode head = cur;
        TreeNode mostRight = null;
        while (cur != null) {
            mostRight = cur.left;
            if (mostRight != null) {
                while (mostRight.right != null && mostRight.right != cur) {
                    mostRight = mostRight.right;
                }
                if (mostRight.right == null) {
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
                    mostRight.right = null;
                    printEdge(cur.left);
                }
            }
            cur = cur.right;
        }
        printEdge(head);
        System.out.println();
    }
    public static void printEdge(TreeNode head) {
        TreeNode tail = reverseEdge(head);
        TreeNode cur = tail;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.right;
        }
        reverseEdge(tail);
    }
    public static TreeNode reverseEdge(TreeNode from) {
        TreeNode pre = null;
        TreeNode next = null;
        while (from != null) {
            next = from.right
            from.right = pre;
            pre = from;
            from = next;
        }
        return pre;
    }
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();
            if (root.right == null || root.right == prev) {
                res.add(root.val);
                prev = root;
                root = null;
            } else {
                stack.push(root);
                root = root.right;
            }
        }
        return res;
    }

目录
相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
92 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
算法 搜索推荐 Java
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
这篇文章介绍了如何使用Java后端技术,结合Graphics2D和Echarts等工具,生成包含个性化信息和图表的海报,并提供了详细的代码实现和GitHub项目链接。
147 0
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
|
2月前
|
算法 Java Linux
java制作海报一:java使用Graphics2D 在图片上写字,文字换行算法详解
这篇文章介绍了如何在Java中使用Graphics2D在图片上绘制文字,并实现自动换行的功能。
150 0
|
2月前
【LeetCode 43】236.二叉树的最近公共祖先
【LeetCode 43】236.二叉树的最近公共祖先
21 0
|
2月前
【LeetCode 38】617.合并二叉树
【LeetCode 38】617.合并二叉树
15 0
|
2月前
【LeetCode 37】106.从中序与后序遍历构造二叉树
【LeetCode 37】106.从中序与后序遍历构造二叉树
23 0
|
8天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
38 6
|
23天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
21天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
23天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####